EE243 Advanced Electromagnetic Theory

Lec \# 26 Review for Final Exam

- Final Exam Specification Sheet (see handout)
- (Gives sections of Jackson, Kogenik and Harrington)
- Guided Waves
- Lec 13-14; HW 7.1-7.2;
- Dielectric, Corrugated and Plasmon Waveguides
- Lec 15-20; HW 7.3, 8.1-8.3
- Radiation and Scattering
- Lec 21-25; HW 9.1-9.3

Reading: Summarized on Final Exam Specification Sheet

Magnetic/Electric Duality

Harrington 3.2

Electric Sources

\[

\]

- Dual equations for problems in which only an electric source J or only a magnetic source M are present.

Source Free Region

Harrington Strategy 3.12

$$
\begin{array}{ll}
\nabla^{2} \bar{A}+k^{2} \bar{A}=0 & \bar{E}=-\nabla \times \bar{F}+i \omega \mu \bar{A}+\frac{1}{i \omega \varepsilon} \nabla(\nabla \cdot \bar{A}) \\
\nabla^{2} \bar{F}+k^{2} \bar{F}=0 & \bar{H}=\nabla \times \bar{A}+i \omega \bar{F}+\frac{1}{i \omega \mu} \nabla(\nabla \cdot \bar{F})
\end{array}
$$

- With the Lorenz gauge A and F satisfy the wave equation and the fields are give by above equations.
- Choosing the vectors A and B to only be in the z direction is adequate.
- Each potentially contributes 5 components of the E,H combination.

Vector Potential in z Direction

$$
\begin{aligned}
& \bar{A}=\psi \hat{z} \\
& E_{x}=\frac{1}{-i \omega \varepsilon} \frac{\partial^{2} \psi}{\partial x \partial z} \\
& E_{y}=\frac{1}{-i \omega \varepsilon} \frac{\partial^{2} \psi}{\partial y \partial z} \\
& E_{z}=\frac{1}{-i \omega \varepsilon}\left(\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right) \psi \\
& H_{x}=\frac{\partial \psi}{\partial y} \\
& H_{y}=-\frac{\partial \psi}{\partial x} \\
& H_{z}=0
\end{aligned}
$$

$$
\begin{aligned}
& \bar{F}=\psi \hat{z} \\
& E_{x}=-\frac{\partial \psi}{\partial y} \\
& E_{y}=\frac{\partial \psi}{\partial x} \\
& E_{z}=0 \\
& H_{x}=\frac{1}{-i \omega \mu} \frac{\partial^{2} \psi}{\partial x \partial z} \\
& H_{y}=\frac{1}{-i \omega \mu} \frac{\partial^{2} \psi}{\partial y \partial z} \\
& H_{z}=\frac{1}{-i \omega \mu}\left(\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right) \psi
\end{aligned}
$$

$$
\begin{aligned}
& \text { Jackson Strategy Eq. } 8.26 \\
& {\left[\nabla_{t}^{2}+\left(\mu \varepsilon \omega^{2}-k^{2}\right)\right] \bar{E}=0 \quad \text { Jackson } 8.2} \\
& \bar{E}=E_{z} \hat{z}+\bar{E}_{t} \\
& \bar{E}_{t}=\frac{1}{\left(\mu \varepsilon \omega^{2}-k^{2}\right)}\left[k \nabla_{t} E_{z}-\omega \hat{z} \times \nabla_{t} B_{z}\right] \\
& \bar{B}_{t}=\frac{1}{\left(\mu \varepsilon \omega^{2}-k^{2}\right)}\left[k \nabla_{t} B_{z}+\mu \varepsilon \omega \hat{z} \times \nabla_{t} E_{z}\right]
\end{aligned}
$$

- E and B satisfy wave equation with transverse operator and $-\mathrm{k}^{2}$
- Break up E and B into longitudinal and transverse
- Transverse fields can be found from E_{z} and B_{z}.

Waveguide Simplifications (Revised)

$$
\begin{aligned}
& \bar{E}_{t}= \pm \frac{i k}{\gamma^{2}} \nabla_{t} \bar{E}_{z} \\
& \bar{B}_{t}= \pm \frac{i k}{\gamma^{2}} \nabla_{t} \bar{B}_{z} \\
& \gamma^{2}=\mu \varepsilon \omega^{2}-k^{2} \\
& \bar{H}_{t}=\frac{ \pm 1}{Z} \hat{z} \times \bar{E}_{t} \\
& Z_{T M}=\frac{k}{\omega \varepsilon}=\frac{k}{k_{0}} \sqrt{\frac{\mu}{\varepsilon}} \\
& Z_{T E}=\frac{\mu \omega}{k}=\frac{k_{0}}{k} \sqrt{\frac{\mu}{\varepsilon}}
\end{aligned}
$$

- Set Boundary Condition
- If TE Ez $=0$ on p.e.c. sidewall.
- If TM use 8.26 to get normal derivative of $\mathrm{Bz}=0$
- Solve for Ez and/or Bz
- Then use gradient to find the associated transverse B or E
- Use impedance to find the associated transverse E and B (or use 8.26)

Rectangular Waveguide Example (TM)

$$
\begin{aligned}
& \psi=E_{z} \\
& \left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\gamma^{2}\right) \psi=0 \\
& \left.\psi\right|_{S}=0 \\
& \bar{E}_{t}= \pm \frac{i k}{\gamma^{2}} \nabla_{t} \psi \\
& \bar{H}_{t}=\frac{ \pm 1}{Z} \hat{z} \times \bar{E}_{t} \\
& Z_{T M}=\frac{k}{\omega \varepsilon}=\frac{k}{k_{0}} \sqrt{\frac{\mu}{\varepsilon}}
\end{aligned}
$$

$$
\begin{aligned}
& E_{z m n}=E_{0} \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) \\
& \gamma_{m n}^{2}=\pi^{2}\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right) \\
& E_{x}=E_{0} \frac{i k \pi}{\gamma_{m n}{ }^{2} a} \cos () \sin () \\
& E_{y}=E_{0} \frac{i k \pi}{\gamma_{m n}^{2} b} \sin () \cos () \\
& H_{x}=-E_{0} \frac{i k \pi}{Z_{T M} \gamma_{m n}^{2} b} \sin () \cos () \\
& H_{y}=E_{0} \frac{i k \pi}{Z_{T M} \gamma_{m n}^{2} a} \cos () \sin ()
\end{aligned}
$$

Copyright 2006 Regents of University of California

Fields Generated by a Localized Source

To find amplitude of a given mode propagating to the right

- General expansion for modes to right
- Assume the given mode of arbitrary amplitude is propagating to left from outside the boundary
- Apply reciprocity to the volume for these two sets of fields

Fields Generated by a Localized Source (Cont.)

Apply reciprocity to the volume for these two sets of fields

- Integral over wall is zero
- Integral over left cut-plane is zero as all modes going same direction
- Integral over right cut plane is proportional to outgoing mode amplitude times incoming mode amplitude
- Intergral over the source measures the component of the source with the x, y eigenfunction variation as well as phase coherence with z and is proportional to incoming mode amplitude
- Ratio cancels incoming amplitude and gives outgoing amplitude.

Representation of Fields in Guide

- Localized source J creates
waves

$$
\begin{aligned}
& \bar{E}^{+}=\sum_{\lambda} A_{\lambda}^{+}\left[\bar{E}_{t \lambda}(x, y)+\bar{E}_{z \lambda}(x, y)\right] e^{-k_{k} z} \\
& \bar{H}^{+}=\sum_{\lambda} A_{\lambda}^{+}\left[\bar{H}_{u \lambda}(x, y)+\bar{H}_{2 \lambda}(x, y)\right] e^{-k_{k}, z} \\
& \bar{E}^{-}=\sum_{\lambda} A_{\lambda}^{-}\left[\bar{E}_{\lambda \lambda}(x, y)-\bar{E}_{z \lambda}(x, y) e^{+k_{k},}\right. \\
& \bar{H}^{-}=\sum_{\lambda} A_{\lambda}^{-}\left[-\bar{H}_{t \lambda}(x, y)+\bar{H}_{2 \lambda}(x, y)\right] e^{+k_{k \lambda} z} \\
& \bar{E}_{\text {trst }}^{-}=C_{\lambda}^{-}\left[\bar{E}_{t z}(x, y)-\bar{E}_{z \lambda}(x, y)\right] e^{+k_{k}, z} \\
& \bar{H}_{t s t r}^{-}=C_{\lambda}^{-}\left[-\bar{H}_{t \lambda}(x, y)+\bar{H}_{z \lambda}(x, y)\right] e^{+k_{k, z}}
\end{aligned}
$$

- Index λ goes over TE, TM, m, n
- To right of source only waves to +z and sum over all TE and TM modes that propagate
- To left of source only waves to -z and sum over all TE and TM waves
- To left fields have signs altered $\operatorname{div} \mathrm{E}=\operatorname{div} \mathrm{H}=0$
- Test wave from outside going to left across volume

Apply Reciprocity Formulation

$$
\begin{aligned}
& \nabla \cdot\left(\bar{E}_{\text {TEST }} \times \bar{H}_{\lambda}^{ \pm}-\bar{E}_{\lambda}^{ \pm} \times H_{\text {TEST }}\right)=\bar{J} \cdot \bar{E}_{\text {TEST }} \\
& \int_{S}\left(\bar{E}_{\text {TEST }} \times \bar{H}_{\lambda}^{ \pm}-\bar{E}_{\lambda}^{ \pm} \times H_{\text {TEST }}\right) \cdot \hat{n} d a=\int_{V} \bar{J} \cdot \bar{E}_{\text {TEST }} d^{3} x
\end{aligned}
$$

- Source J produces the modes leaving the localized source region with amplitudes A_{λ}
- Source free TEST wave enters the volume and takes a measure of E
- Take Poynting Theorem like interaction

Are There Waves on Material Surfaces?

1 = dielectric

$$
\begin{aligned}
& H_{1 y}=H_{1} \hat{y} e^{-v_{1} x} e^{i k_{z} z} \\
& H_{2 y}=H_{2} \hat{y} e^{+v_{2} x} e^{i k_{z} z} \\
& v_{1}=\sqrt{k_{z}^{2}-\omega^{2} \mu_{0} \varepsilon_{1}} \\
& v_{2}=\sqrt{k_{z}^{2}-\omega^{2} \mu_{0} \varepsilon_{2}}
\end{aligned}
$$

- Consider TM w/r z case with Hy given and same z phase variation
- Will have Hy, Ez and Ex (but Ey $=\mathrm{Hx}=\mathrm{Hz}=0$)

Copyright 2006 Regents of University of California

Boundary Conditions

- Hy continuous (or) D normal continuous gives $\mathrm{H}_{10}=\mathrm{H}_{20}$.
- Ez continuous gives final constraint to find k_{z}.
- This constraint is the same as setting the impedance looking upward equal to the negative of the impedance looking downward.
- Impedance looking upward is capacitive (neg imy).
- Impedance looking downward thus need to be inductive.
$-Z_{+x}=\frac{-V_{1}}{-i \omega \varepsilon_{1}}=\frac{+V_{2}}{-i \omega \varepsilon_{2}}=Z_{-x}$

Solving for Surface Wave Conditions

$$
\begin{aligned}
& \frac{v_{1}}{\varepsilon_{1}}=\frac{-v_{2}}{\varepsilon_{2}} \\
& v_{1}=\sqrt{k_{z}^{2}-\omega^{2} \mu_{0} \varepsilon_{1}} \\
& v_{2}=\sqrt{k_{z}^{2}-\omega^{2} \mu_{0} \varepsilon_{2}} \\
& k_{z}=k_{1} \sqrt{\frac{\varepsilon_{2}}{\left(\varepsilon_{2}+\varepsilon_{1}\right)}} \\
& v_{1}=k_{1} \sqrt{\frac{-\varepsilon_{1}}{\left(\varepsilon_{2}+\varepsilon_{1}\right)}}
\end{aligned}
$$

- Constraint
- Substitute definition of v_{1} and v_{2} to solve for k_{z}.
- Substitute solution for k_{z} to find other properties
$-\mathrm{v}_{1}$ and v_{2} (localization in x)
- Resolution in z with large k_{z}
- Probe height in x

$\omega-\beta$ Diagram for Plasmon

- The plasmons start as frequency is increased
- close to the speed of light line,
- become slightly slower, and
- turn into a very slow wave (horizontal line) at the plasma frequency.

Surface Topography Can Aid Guided Waves

Harrington 4.8
Corrugated Surface

Impedance looking down into the

$$
\begin{aligned}
& Z_{\text {down }}=-i \sqrt{\frac{\mu_{1}}{\varepsilon_{1}}} \tan k_{0} d=-i 377 \tan k_{0} d \\
& Z_{u p}=\frac{-v_{1}}{i \omega \varepsilon_{1}} \\
& k_{z}=k_{0} \sqrt{1+\tan ^{2} k_{0} d}
\end{aligned}
$$

corrugations is inductive.

- Impedance looking into slot is that of a parallel plate waveguide terminated in a short.
- Slsot must be narrow compared to a wavelength
- Depth must be $>5 \%$ of wavelength to contribute.
- For plasmons
- effects might add
- which wavelength should be used

Dielectric Waveguides

$$
\begin{aligned}
& e^{j \omega t} \\
& e^{-j k_{z} z} \\
& v_{0}=\sqrt{k_{z}^{2}-\omega^{2} \mu_{0} \varepsilon_{0}} \\
& k_{x}=\sqrt{\omega^{2} \mu_{0} \varepsilon 1-k_{z}^{2}} \\
& v_{2}=\sqrt{k_{z}^{2}-\omega^{2} \mu_{2} \varepsilon_{2}}
\end{aligned}
$$

- Three regions
- Choose TM (or TE)
- Will have Hy, Ez and Ex (Ey, Hx, and Hz)

Dielectric Waveguide: Physical Nature

Harrington 4.7 Special case of air on top and bottom, thickness a

TM
odd $\quad \frac{k_{x} a}{2} \tan \frac{k_{x 0} a}{2}=\frac{\varepsilon_{1} v_{0} a}{\varepsilon_{0}} \frac{2}{2}$

- Right hand side is a circle; Left hand side is spikes in tan (See H Fig 4-11)
- Odd $\sin \left(\mathrm{k}_{\mathrm{y}} \mathrm{x}\right)$ variations have no cut-off (always exist) in both TM and TE
- Mutiple solutions (intersections) give multiple modes
- Additional new mode about every half wavelength of oscillatory variation.
- Weighted by material contrast sqrt $\left(\mu_{1} \varepsilon_{1}-\mu_{0} \varepsilon_{0}\right)$

$\omega-\beta$ Diagram for Dielectric Guide

- The mode may starts along $\mathrm{n}_{\text {AIR }}$ at low frequency
- Then transitions toward the $\mathrm{n}_{\text {GUIDE }}$
- And asymptotes to $\mathrm{N}_{\text {GUIDE }}$

Dielectric Layer Modes

- Discrete guided modes
- Continuum of radiating modes in air and substrate
- TE and TM cases not separated

Copyright 2006 Regents of University of California

Orthogonality of Modes (Cont.)
 $\nabla_{t}\left(\bar{E}_{v} \times \bar{H}_{\mu}^{*}+\bar{E}_{\mu}^{*} \times \bar{H}_{v}\right)-j\left(\beta_{v}-\beta_{\mu}\right)\left(\bar{E}_{t v} \times \bar{H}_{t \mu}^{*}+\bar{E}_{t \mu}^{*} \times \bar{H}_{t v}\right)=0$

- Apply divergence theorem to cross section, argue integral over contour at infinity is zero, and
- finally apply to mode in reverse direction and add
- Result the transverse E crossed Transverse H integrated over the cross section is zero when the propagation constant of the two modes differs.
- Apply to find mode amplitudes produced by $\mathrm{E}_{\text {TAN }}$ and $\mathrm{H}_{\text {TAN }}$ on a cross sectional plane

$$
\begin{aligned}
& a_{v}=\iint_{\infty} d x d y\left(\bar{E}_{t} \times \bar{H}_{v}^{*}+\bar{E}_{v}^{*} \times \bar{H}_{t}\right) \\
& b_{v}=\iint_{\infty} d x d y\left(\bar{E}_{t} \times \bar{H}_{v}^{*}-\bar{E}_{v}^{*} \times \bar{H}_{t}\right)
\end{aligned}
$$

Coupled-Mode Concept

Perturbations

- Consider a geometry or material change for which there is an additional source of excitation with complex polarization amplitude P
- This polarization can be due to the E field from a strong mode hitting a region of missing or added dielectric.
- This polarization source then drives other modes.
- This sourcing of other modes can occur simultaneously among modes and is know as coupled modes.
- The distribution of the polarization can also be made periodic in distance along the guide to couple in our out planewaves.

Coupled Mode Formalism (Cont.)

$$
\begin{aligned}
& \nabla\left(\bar{E}_{1} \times \bar{H}_{2}^{*}+\bar{E}_{2}^{*} \times \bar{H}_{1}\right)=-j \omega \bar{P}_{1} \cdot \bar{E}_{2}^{*}+j \omega P_{2}^{*} \cdot \bar{E} 1 \\
& \bar{P}=\Delta \varepsilon \bar{E} \\
& \bar{P}_{i}=\Delta \varepsilon_{i j} \bar{E}_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d a_{\mu}}{d z}+j \beta_{u} a_{\mu}=-j \omega \iint_{\infty} d x d y \bar{P}_{\text {TOT }} \cdot \bar{E}_{\mu}^{*} \\
& \frac{d b_{\mu}}{d z}-j \beta_{u} b_{\mu}=j \omega \iint_{\infty} d x d y \bar{P}_{\text {TOT }} \cdot \bar{E}_{-\mu}^{*}
\end{aligned}
$$

Periodic Wave Vectors

- The mode k -vector is larger than k_{O} and smaller than k_{G}
- The periodic coupling creates new k-vectors spaced by $2 \pi /$ Period
- The new k -vectors within the k_{0} circle correspond to radiation waves
- Move upward vertically from $\mathrm{k}_{\mathrm{m}-1}$ to find the k_{y} and angle.

Waveguide Deformations (Cont.)

$$
\begin{aligned}
& K_{v u}^{t}=\omega \iint_{\infty} d x d y \Delta \varepsilon \bar{E}_{v v} \cdot \bar{E}_{t u}^{*} \\
& K_{v u}^{z}=\omega \iint_{\infty} d x d y \frac{\varepsilon}{\varepsilon+\Delta \varepsilon} \Delta \overline{E_{z v}} \cdot \bar{E}_{z u}^{*} \\
& A_{u}^{\prime}=-j \sum\left\{\begin{array}{l}
A_{\nu}\left(K_{v u}^{t}+K_{v u}^{z}\right) e^{-j\left(\beta_{u}-\beta_{u}\right) z} \\
+B_{v}\left(K_{v u}^{t}-K_{v u}^{z}\right) e^{\left(\beta_{u}+\beta_{u}\right) z}
\end{array}\right\} \\
& B_{u}^{\prime}=j \Sigma\left\{\begin{array}{l}
A_{v}\left(K_{v u}^{t}-K_{v u}^{z}\right) e^{-j\left(\beta_{v}+\beta_{u}\right) z} \\
+B_{v}\left(K_{v u}^{t}+K_{v u}^{z}\right) e^{j\left(\beta_{u}-\beta_{u} u z\right.}
\end{array}\right\}
\end{aligned}
$$

- Substiture Pt and Pz contributions
- Introduce definitions of transverse and longitudinal K's and rewrite

Copyright 2006 Regents of University of California

Coupled-Wave Solutions: Co-

$A^{\prime}=-j \kappa B e^{-2 j \delta z}$

Directional Kogelnik 2.6.25-31

$$
\begin{aligned}
& B^{\prime}=-j \kappa A e^{2 j \delta \dot{z}} \\
& A=\operatorname{Re}^{-j \delta \varepsilon} \\
& B=S e^{j \delta z} \\
& R^{\prime}-j \delta R=-j \kappa S \\
& S^{\prime}+j \delta S=-j \kappa R \\
& R(0)=1 \\
& S(0)=0
\end{aligned}
$$

- Select subset of terms
- Remove residual lack of synchronization
- Coupled Equations
- Matrix solution
- Boundary conditions
$S(z)=-j \kappa \sin \left(z \sqrt{\kappa^{2}+\delta^{2}}\right) / \sqrt{\kappa^{2}+\delta^{2}}$
$R(z)=\cos \left(z \sqrt{\kappa^{2}+\delta^{2}}\right)+j \delta \sin \left(z \sqrt{\kappa^{2}+\delta^{2}}\right) / \sqrt{\kappa^{2}+\delta^{2}}$
$S(z)=-j \kappa \sin (\kappa z)$
$R(z)=\cos (\kappa z)$
- Simplification for synchronous case

Coupled-Wave Solutions: Periodic Waveguides

$\mathrm{h} \quad \Delta \mathrm{h}=$ half height of variation $\quad \mathrm{n}_{\mathrm{f}}$
Kogelnik 2.6.41-48
$h(z)=h_{0}+\Delta h \cos (K z)$

- Film n_{f} plus cover n_{c}
$K=2 \pi / \Lambda$
$\Delta \varepsilon=\varepsilon_{0}\left(n_{f}^{2}-n_{c}^{2}\right)$
$\Delta \varepsilon=-\varepsilon_{0}\left(n_{f}^{2}-n_{c}^{2}\right)$
- Sinusoidal height
- Period Λ and k-vector K
- Two $\Delta \varepsilon$
- Ec is mode field at surface
$K_{u,-u}^{1}=\omega \int_{-\infty}^{+\infty} d x \Delta \varepsilon E_{y}^{2}$
- $\Delta \varepsilon$ z-variation produces (kvector shift)
$K_{u,-u}^{1} \approx \omega E_{c}^{2} \int_{-\infty}^{+\infty} d x \Delta \varepsilon$
- N is the effective index
$K_{u,-u}^{1} \approx \omega \varepsilon_{0} E_{c}^{2}\left(n_{f}^{2}-n_{c}^{2}\right) \Delta h\left(e^{j K z}+e^{-j K z z}\right)$
$K_{u,-u}^{1} \approx \frac{\pi}{\lambda} \frac{\Delta h}{h_{e f f}} \frac{n_{f}^{2}-N^{2}}{N}\left(e^{j K z}+e^{-j K z)}\right)$

Coupled Modes as Eigenfunction Problem

Use to check Kogelnik Solution in Eq. 2.6.30-31.

$$
\bar{X}_{A}=\left\{\begin{array}{c}
a_{n-1} \\
a_{n} \\
a_{n+1}
\end{array}\right\} \quad \begin{aligned}
& \text { - } \begin{array}{l}
\text { Construct a vector of mode } \\
\text { amplitudes }
\end{array} \\
& \text { - Rate equation can be writte } \\
& \text { as derivative of mode vecto }
\end{aligned}
$$

- Rate equation can be written as derivative of mode vector equal to a coupling matrix M times mode vector
- Look for source free solutions (eigenvalues) by substituting an arbitrary exponential variation
- Determinant constrains arbitrary exponential (eigenvalues)

Coupled Mode: v_{g} and v_{p} Same Direction

When the group and phase velocities are in the same direction

- The eigenvalues (β 's) move away from each other
- The displacement is proportional to the coupling coefficient
- The eigenfunctions (Super Modes) associated with eigenvalue (β) continuously change identity in passing through the crossing point

Radiating Zones

- Near (Static) Zone $\mathrm{d} \ll \mathrm{r} \ll \lambda$
- Exponential is unity, $=>$ static and no radiation
- Intermediate (Induction) Zone $\mathrm{d} \ll \mathrm{r} \sim \lambda$
- General expansion required
- Far (Radiation) Zone $\mathrm{d} \ll \lambda \ll \mathrm{r}$
- Approximate denominator as $1 / \mathrm{r}$
- Approximate exponential as quadratic => Fresnel
- Or Approximate exponential as linear => Fraunhoffer

$$
\mid \bar{x}-\bar{x}^{\prime} \approx r-\bar{n} \cdot \bar{x}^{\prime}
$$

Approximated by
$\bar{A}(\bar{x})=\frac{\mu_{0}}{4 \pi} \frac{e^{i k r}}{r} \int \bar{J}\left(\bar{x}^{\prime}\right) e^{i k\left(\bar{n} \cdot \bar{x}^{\prime}\right)} d^{3} x^{\prime} \quad \begin{aligned} & \text { projection parallel to } \mathrm{n} \\ & \text { In Fourier transform }\end{aligned}$

Electric Dipole Fields and Radiation

$$
\begin{array}{ll}
\bar{A}(\bar{x})=\frac{\mu_{0}}{4 \pi} \int \bar{J}\left(\bar{x}^{\prime}\right) \frac{e^{i k\left|\bar{x}-\bar{x}^{\prime}\right|}}{\left|\bar{x}-\bar{x}^{\prime}\right|} d^{3} x^{\prime}=-\frac{i \mu_{0} \omega}{4 \pi} \bar{p} \frac{e^{i k r}}{r} \\
\bar{p}=\int \bar{x}^{\prime} \rho\left(\bar{x}^{\prime}\right) d^{3} x^{\prime} & \text { Approximate exponent as } \\
\bar{H} \approx \frac{c k^{2}}{4 \pi}(\bar{n} \times \bar{p}) \frac{e^{i k r}}{r} & \text { constant } \\
\bar{E}=Z_{0} \bar{H} \times \bar{n} & \text { Apply i} \omega \rho=\text { Div J } \\
& \text { Integrate by parts }
\end{array}
$$

- Fields are perpendicular to n and perpendicular to each other
- Both E and H decrease as $1 / \mathrm{r}$

Poynting Vector for Electric Dipole

$$
\begin{aligned}
& \frac{d P}{d \Omega}=\frac{1}{2} \operatorname{Re}\left[r^{2} \bar{n} \cdot \bar{E} \times \bar{H}^{*}\right] \\
& \frac{d P}{d \Omega}=\frac{c^{2} Z_{0}}{32 \pi^{2}} k^{4}|(n \times p) \times n|^{2} \\
& \frac{d P}{d \Omega}=\frac{c^{2} Z_{0}}{32 \pi^{2}} k^{4}\left|\bar{p}^{2}\right| \sin ^{2} \theta \\
& P=\frac{c^{2} Z_{0}}{12 \pi} k^{4}\left|\bar{p}^{2}\right|
\end{aligned}
$$

- Poynting vector gives power density per unit solid angle
- Substitute for fields
- Sin squared polar angle
- Integrate over azimuthal and polar angles to get net power radiated.

Aperture Radiation

$$
\begin{aligned}
& \mid \bar{x}-\bar{x}^{\prime} \approx r-\bar{n} \cdot \bar{x}^{\prime} \\
& \bar{A}(\bar{x})=\frac{\mu_{0}}{4 \pi} \frac{e^{i k r}}{r} \int \bar{J}\left(\bar{x}^{\prime}\right) e^{i k\left(\bar{n} \cdot \bar{x}^{\prime}\right)} d^{3} x^{\prime}
\end{aligned}
$$

$$
\bar{A}(\bar{x})=\frac{\mu_{0}}{4 \pi} \frac{e^{i k r}}{r} \int_{-a / 2}^{a / 2} e^{i k x^{\prime}} d x^{\prime} \int_{-b / 2}^{b / 2} e^{i k y^{\prime}} d y^{\prime}
$$

$$
\bar{A}(\bar{x})=\frac{\mu_{0}}{4 \pi} \frac{e^{i k r}}{r} a b\left[\frac{\sin (k a x / 2 r)}{k a x / 2 r} \frac{\sin (k a y / 2 r)}{k a y / 2 r}\right]
$$

- Rectangular current patch flowing in x direction over

$$
\begin{aligned}
& -a / 2<x<a / 2 \\
& -b / 2<y<b / 2
\end{aligned}
$$

- Plug in Fraunhoffer approximation for A
- Factor to F(x)G(y)
- View as product of two Fourier Transforms

Antenna Array Patterns

Composite

Array Factor

Element

- Composite Array id built from a element instantiated at array positions (convolution of element with space array factor)
- FT of convolution is product of FT's
- Composite pattern is the array pattern times element pattern.

Scattering by Dipoles Induced in Small Scatterers

$$
\begin{aligned}
& \bar{E}_{\text {inc }}=e_{0} E_{0} e^{i k \hat{n}_{0} \cdot \bar{x}} \\
& \bar{H}_{\text {inc }}=\hat{n}_{0} \times \bar{E}_{\text {inc }} / Z_{0} \\
& \bar{p}=\text { induced_electric_dipole } \\
& \bar{m}=\text { induced_magnetic_dipole } \\
& \bar{E}_{\text {sc }}=\frac{1}{4 \pi \varepsilon_{0}} k^{2} \frac{e^{i k r}}{r}[(\hat{n} \times \bar{p}) \times n-n \times \bar{m} / c] \\
& \bar{H}_{s c}=\hat{n} \times \bar{E}_{s c} / Z_{0}
\end{aligned}
$$

- Incident fields induce electric and magnetic dipole moments
- Far fields from are then found from these moments

Scattering from a Small Dielectric Sphere

$$
\bar{p}=4 \pi \varepsilon_{0}\left(\frac{\varepsilon_{r}-1}{\varepsilon_{r}+2}\right) a^{3} \bar{E}_{\text {inc }} \quad \text { Jackson 10.1.B }
$$

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}\left(\hat{n}, \hat{e} ; \hat{n}_{0}, \hat{e}_{0}\right)=k^{4} a^{6}\left|\frac{\varepsilon_{r}-1}{\varepsilon_{r}+2}\right|^{2}\left|\hat{e}^{*} \cdot \hat{e}_{0}\right|^{2} \\
& \sigma=\int \frac{d \sigma}{d \Omega} d \Omega=\frac{8 \pi}{3} k^{4} a^{6}\left|\frac{\varepsilon_{r}-1}{\varepsilon_{r}+2}\right|^{2}
\end{aligned}
$$

- Dipole \mathbf{p} is in the direction of the incident field and equal to the static polarization (same weight factor and proportional to volume).
- Radiation is proportional the observation polarization direction dotted with the incident polarization. This gives $\cos \theta$ in one angle and constant in ϕ.
- Strength is 6-th power of size (volume squared) and 4-th power relative to size in wavelengths. (This explains the creation of the blue sky success of horizontally polarized sun glasses).
- Strongest and equal in forward and backward directions.

Scattering from a Small p.e.c. Sphere

$$
\begin{aligned}
& \bar{p}=4 \pi \varepsilon_{0} a^{3} \bar{E}_{\text {inc }} \\
& \bar{m}=-2 \pi a^{3} \bar{H}_{\text {inc }} \\
& \frac{d \sigma}{d \Omega}\left(\hat{n}, \hat{e} ; \hat{n}_{0}, \hat{e}_{0}\right)=k^{4} a^{6}\left|\hat{e}^{*} \cdot \hat{e}_{0}-\frac{1}{2}\left(\hat{n} \times \hat{e}^{*}\right) \cdot\left(\hat{n}_{0} \times \hat{e}_{0}\right)\right|^{2}
\end{aligned}
$$

\mathbf{p} and \mathbf{m}

- Both exist
- Are at right angles
- Interfere coherently
- produce a + b cos θ type patterns
- low forward (1/3) and high backward (2x) scattering

Kirchhoff Approximation Representation

$$
\begin{aligned}
& \psi_{\text {GEV }}(\bar{x})=-\frac{1}{4 \pi} \oint_{s_{1}} \frac{e^{k R}}{R} \bar{n}^{\prime} \cdot\left[\nabla^{\prime} \psi+i k\left(1+\frac{i}{k R}\right) \frac{\bar{R}}{R} \psi\right] d a^{\prime} \\
& \psi_{D}(\bar{x})=-\frac{1}{2 \pi i} \frac{\rho_{s_{1}} \frac{k^{u R}}{R}}{R}\left(1+\frac{i}{k R}\right) \frac{\bar{n}^{\prime} \cdot \bar{R}}{R} \psi\left(\bar{x}^{\prime}\right) d a^{\prime}
\end{aligned}
$$

- Apply to Screen with aperture
- Assumptions
- ψ and its normal derivative vanish except on opening
- ψ and its derivative are equal to the those incident on aperture with no screen
- Inherent inconsistencies
- Since scattered field is zero everywhere on screen it is zero everywhere
- Integral does not yield the assumed values on the openings
- Enforcing either Dirichlet or Neuman Boundary Conditions results in a consistent formulation

Vector Integral Representation for Far Field

$$
\begin{aligned}
& E(\bar{x})=\left\{\oint_{S}^{\left[\bar{E}\left(\bar{n}^{\prime} \cdot \nabla^{\prime} G\right)-G\left(\bar{n}^{\prime} \cdot \nabla^{\prime}\right) \bar{E}\right] a^{\prime} \quad \text { Jackson } 10.7}\right. \\
& E(\bar{x})=\oint_{S}\left[i \omega\left(\bar{n}^{\prime} \times \bar{B}\right) G+\left(\bar{n}^{\prime} \times \bar{E}\right) \times \nabla^{\prime} G+\left(\bar{n}^{\prime} \cdot \bar{E}\right) \nabla^{\prime} G\right] a^{\prime} \\
& G \rightarrow \frac{e^{i k r^{\prime}}}{4 \pi r^{n}} e^{n n^{n} \cdot x} \\
& \bar{E}_{s}^{\prime}(\bar{x}) \rightarrow \frac{e^{k r}}{r}\left(\bar{F}\left(\overline{k_{k}}, \bar{k}_{0}\right)\right. \\
& \hat{e}^{*} \cdot \bar{F}\left(\bar{k}, \overline{k_{0}}\right)=\frac{i}{4 \pi} \delta e_{s_{1}}^{1 k_{x} \times x}\left[\omega e^{*} \cdot\left(\bar{n}^{\prime} \times \overline{\bar{s}}_{s}\right)+\hat{e}^{*} \cdot\left(\bar{k} \times\left(\bar{n}^{\prime} \times \bar{E}_{s}\right)\right)\right] d a^{\prime}
\end{aligned}
$$

- Start with \mathbf{x} in volume and interaction integral
- Treat \mathbf{x} as singular point plus rest of volume
- Apply divergence theorem
- Use free space Green Function
- Integral on surface at infinity goes to zero
- Rewrite in transvere only components of E and B on surface

Diffraction by a Circular Aperture Far Field

$$
\begin{aligned}
& \bar{E}(\bar{x})=\frac{i e^{i k r} E_{0} \cos \alpha}{2 \pi r} \int_{0}^{a} \rho d \rho \int_{0}^{2 \pi} d \beta e^{i k \rho[\sin \alpha \cos \beta-\sin \theta \cos (\phi-\beta)]} \\
& \xi=\left(\sin ^{2} \theta+\sin ^{2} \alpha-2 \sin \theta \sin \alpha \cos \phi\right)^{1 / 2} \\
& \frac{1}{2 \pi} \int_{0}^{2 \pi} d \beta^{\prime} e^{-i k \rho \xi \cos \beta^{\prime}}=J_{0}(k \rho \xi) \\
& \bar{E}(\bar{x})=\frac{i e^{i k r}}{r} a^{2} E_{0} \cos \alpha\left(\bar{k} \times \bar{e}_{2}\right) \frac{J_{1}(k a \xi)}{k a \xi} \\
& \frac{d P}{d \Omega}=\left.P_{i} \cos \alpha \frac{(k a)^{2}}{4 \pi}\left(\cos ^{2} \theta+\cos ^{2} \phi \sin ^{2} \theta\right) \frac{2 J_{1}(k a \xi)}{k a \xi}\right|^{2} \\
& P_{i}=\left(\frac{\bar{E}_{0}^{2}}{2 Z_{0}}\right) \pi a^{2} \cos \alpha
\end{aligned}
$$

- Plane wave in $\mathrm{x}-\mathrm{z}$ plane incident from below
- $\mathrm{E}_{\text {TAN }}$ reduced by $\cos \alpha$; linear phase in x direction
- Find field in direction k
- linear phase in x and y directions
- Combine all phases; recognize azimuthal integral as J_{0}; integrate in $\rho=>\mathrm{J}_{1}$
- Result is $J_{1}(\mathrm{v}) / \mathrm{v}$ with weighting for tangential components of arrival and scattering

Scattering in the Short Wavelength Limit

- Shadowed Region Contribution
- Boundary Condition $E_{s}=-E_{\text {inc }} ; B_{s}=-B_{\text {inc }}$
- Small Ave except forward $=>$ depend only on projected area (diffraction pattern from the shadow)
- Illuminated Region Contribution
- Boundary Conditions $\mathrm{E}_{\mathrm{s}}=-\mathrm{E}_{\mathrm{inc}} ; \mathrm{B}_{\mathrm{s}}=-\mathrm{B}_{\mathrm{inc}}$ SAME as Ill.!!!
- Normal difference gives sign difference and different result
- Stationary phase brings our specular surface contributions
- Shadow diffraction can dominate in forward direction
- See Figure 10.16

Planewave Expansion

$$
\begin{aligned}
& \bar{E}_{s}^{\prime}(\bar{x}) \rightarrow \frac{e^{k^{x}}}{r}\left(\bar{F}\left(\bar{k}, \bar{k}_{0}\right)\right. \\
& \hat{e}^{*} \cdot \bar{F}\left(\bar{k}, \bar{k}_{0}\right)=\frac{i}{4 \pi} \int \rho_{s_{1}} e^{n \times x} \times\left[\omega \hat{e}^{*} \cdot\left(\bar{n}^{\prime} \times \bar{B}_{s}\right)+\hat{e}^{*} \cdot\left(\bar{k} \times\left(\bar{n}^{\prime} \times \bar{n}_{s}\right)\right)\right] d a^{\prime}
\end{aligned}
$$

$$
\text { Jackson } 10.7
$$

Example for a mask with period
P in x direction. $\quad \bar{E}_{\text {TOTAL }}=\sum_{n=-N}^{N} \bar{E}_{n} A\left(\theta_{n i}\right) e^{j \Phi\left(\theta_{n i}\right)} e^{-j\left(k_{0} \sin \left(\theta_{n i}\right) x_{i}+k_{0} \cos (\theta n i) z_{i}\right)}$

- Start from Transverse components of \mathbf{E} and \mathbf{B} on plane
- Make planewave spectrum expansion between mask and lens (assume periodic and switch to $\mathrm{e}^{\mathrm{jwt}}$)
- Lens then low pass filters and apodizes/phases transmitted spectrum
- Propagation to image plane is thus the Fourier Transform of the filtered/phased spectrum

Electric Field as Sum of Plane Waves

Simplify to (x, z) plane, E in y-direction, $\mathrm{A}=1, \Phi=0$
Mask with period P Bragg Condition Implies

$$
\begin{gathered}
\sin \left(\theta_{n}\right)=\frac{n \lambda}{P} \quad \cos \left(\theta_{n}\right)=\sqrt{1-\left(\frac{n \lambda}{P}\right)^{2}} \\
\overline{k_{n}}=k_{x_{n}} \hat{x}+k_{z n} \hat{z}=k_{0} \sin \left(\theta_{x_{n}}\right) \hat{x}+k_{0} \cos \left(\theta_{z_{n}}\right) \hat{z} \\
E_{T O T A L}=\sum_{n} E_{n} e^{-j\left(k_{0} \sin \left(\theta_{n}\right) x+k_{0} \cos \left(\theta_{n}\right) z\right)}=\sum_{n} E_{n} e^{-j\left(\bar{k}_{n} \cdot \bar{x}\right)}
\end{gathered}
$$

Three wave case for on-axis illumination of mask with period P

$$
E_{\text {TOTAL }}=E_{-1} e^{-j\left(-\frac{2 \pi}{P} x+\frac{2 \pi}{\lambda} \cos \left(\theta_{-1}\right) z\right)}+E_{0} e^{-j\left(0 \cdot \frac{2 \pi}{P} x+\frac{2 \pi}{\lambda} \cos \left(\theta_{0}\right) z\right)}+E_{+1} e^{-j\left(\frac{2 \pi}{P} x+\frac{2 \pi}{\lambda} \cos \left(\theta_{+1}\right) z\right)}
$$

Electric Field Spectrum M(u) from E(x)

$$
m(x)=A \cdot \operatorname{rect}\left(\frac{x}{P / 2}\right) * \operatorname{comb}\left(\frac{x}{P}\right)
$$

Figure 18 A periodic rectangular wave, representing dense mask features.

Figure 19 The amplitude spectrum of a rectangular wave, $\mathrm{A} / 2 \operatorname{sinc}\left(u / 2 u_{0}\right)$. This is equivalent to the discrete orders of the coherent Fraunhofer diffraction pattern.

$$
\mathbf{u}_{0}=\mathbf{1} / \mathbf{P}
$$

Values are $1 / 2,1 / \pi, 1 / 3 \pi, 1 / 5 \pi$
Sheats and Smith

Polarization Effects at High NA

Parallel Orientation

Copyright 2006 Regents of University of California

Alternating Phase-Shifting Mask

Figure 64 Schematic of (a), a conventional binary mask (b) an alternating phase shift mask. The mask electric field, image amplitude, and image intensity is shown for each.

Sheats and Smith

Electric Field within Resist

$$
\begin{aligned}
& 5 \text { waves } \\
& \text { match boundary conditions } \\
& \text { (or use signal flow analysis) } \\
& \text { use definition of } \tau_{\mathbf{D}}
\end{aligned}
$$

$$
\left.E_{\text {RESIST }}(x, y, z)=E_{A I R_{-} I N C}(x, y) \frac{\tau_{12}\left(e^{-j k_{2} z}+\rho_{23}\right) \frac{\downarrow}{\left.\tau_{D}^{2} e^{+j k_{2} z}\right)}}{\substack{1+\rho_{12} \rho_{23} \tau_{D}^{2}}} \begin{array}{c}
\text { Round trip } \\
\text { Transmission in } \\
\text { Reflection at substrate } \\
\rho_{12}=-\rho_{21}
\end{array} \begin{array}{c}
\text { (loss) } \\
\text { (los gain }
\end{array}\right)
$$

Copyright 2006 Regents of University of California

Reflection and Transmission

Reflection and transmission coefficients in going from media ito media \mathbf{j}

$$
\rho_{i j}=\frac{n_{i}-n_{j}}{n_{i}+n_{j}} \quad \tau_{i j}=\frac{2 n_{i}}{n_{i}+n_{j}} \quad \text { Note: } 1+\rho=\tau
$$

Phase change and attenuation with distance z
Example: air to quartz ($\mathbf{n}_{\mathbf{q z}}=1.5$); $\rho=-0.2$ and $\tau=0.8$

$$
\tau(\mathrm{Z})=e^{-j\left(n_{r}+j n_{i}\right) \frac{2 \pi}{\lambda_{\text {air }}} z}
$$

Example: complex propagation
factor in going from $\mathrm{z}=0$ to $\mathrm{z}=\mathrm{D}$ is

$$
\tau_{D}=e^{-j\left(n_{r}+j n_{i}\right) \frac{2 \pi}{\lambda_{\text {air }}} D}
$$

The same net complex factor occurs for the upward wave in going from $\mathrm{z}=\mathrm{D}$ to $\mathrm{z}=0$.

