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EE243 Advanced Electromagnetic Theory

Lec # 26 Review for Final Exam

• Final Exam Specification Sheet (see handout)
• (Gives sections of Jackson, Kogenik and Harrington)

• Guided Waves 
• Lec 13-14; HW 7.1-7.2; 

• Dielectric, Corrugated and Plasmon Waveguides  
• Lec 15-20; HW 7.3, 8.1-8.3

• Radiation and Scattering
• Lec 21-25; HW 9.1-9.3

Reading: Summarized on Final Exam Specification 
Sheet
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Magnetic/Electric Duality

• Dual equations for problems in which only 
an electric source J or only a magnetic 
source M are present.

xd
xx

eM

FE
EiH

MHiE

V

xxik

′
′−

=

×−∇=

−=×∇

−=×∇

∫
′−

3

4
1F
π

ωε
ωµ

xd
xx

eJ

AH
HiE

JEiH

V

xxik

′
′−

=

×∇=

=×∇

+−=×∇

∫
′−

3

4
1A
π

ωµ
ωε

Electric Sources Magnetic Sources
Harrington 3.2



Copyright 2006 Regents of University of California
3

EE 210 Applied EM Fall 2006, Neureuther Lecture #26 Ver 11/30/06

Source Free Region
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• With the Lorenz gauge A and F satisfy the wave equation 
and the fields are give by above equations.

• Choosing the vectors A and B to only be in the z direction 
is adequate.

• Each potentially contributes 5 components of the E,H 
combination.
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Vector Potential in z Direction
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Jackson Strategy Eq. 8.26

• E and B satisfy wave equation with transverse 
operator and –k2

• Break up E and B into longitudinal and transverse
• Transverse fields can be found from Ez and Bz.
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Waveguide Simplifications (Revised)
• Set Boundary Condition

– If TE Ez = 0 on p.e.c. sidewall.
– If TM use 8.26 to get normal 

derivative of Bz = 0

• Solve for Ez and/or Bz
• Then use gradient to find the 

associated transverse B or E
• Use impedance to find the 

associated transverse E and B 
(or use 8.26)
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Rectangular Waveguide Example (TM)
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Fields Generated by a Localized Source

To find amplitude of a given mode propagating to 
the right

• General expansion for modes to right
• Assume the given mode of arbitrary amplitude is 

propagating to left from outside the boundary
• Apply reciprocity to the volume for these two sets 

of fields
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Fields Generated by a Localized Source (Cont.)

Apply reciprocity to the volume for these two sets of fields
• Integral over wall is zero
• Integral over left cut-plane is zero as all modes going same direction
• Integral over right cut plane is proportional to outgoing mode 

amplitude times incoming mode amplitude
• Intergral over the source measures the component of the source with 

the x,y eigenfunction variation as well as phase coherence with z and 
is proportional to incoming mode amplitude

• Ratio cancels incoming amplitude and gives outgoing amplitude.
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Representation of Fields in Guide
• Localized source J creates 

waves
– Index λ goes over TE, TM, 

m, n
– To right of source only 

waves to +z and sum over 
all TE and TM modes that 
propagate

– To left of source only waves 
to –z and sum over all TE 
and TM waves

– To left fields have signs 
altered div E = div H = 0

– Test wave from outside 
going to left across volume
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Apply Reciprocity Formulation

• Source J produces the modes leaving the localized 
source region with amplitudes Aλ

• Source free TEST wave enters the volume and 
takes a measure of E

• Take Poynting Theorem like interaction
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Are There Waves on Material Surfaces?

• Consider TM w/r z case with Hy given and same z phase 
variation

• Will have Hy, Ez and Ex (but Ey = Hx = Hz = 0)
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Boundary Conditions
• Hy continuous (or) D normal 

continuous gives H10 =H20.
• Ez continuous gives final 

constraint to find kz.
• This constraint is the same as 

setting the impedance looking 
upward equal to the negative of 
the impedance looking 
downward.

• Impedance looking upward is 
capacitive (neg imy).

• Impedance looking downward 
thus need to be inductive.
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Solving for Surface Wave Conditions

• Constraint
• Substitute definition of v1

and v2 to solve for kz.
• Substitute solution for kz to 

find other properties 
– v1 and v2 (localization in x)
– Resolution in z with large kz

– Probe height in x
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ω−β Diagram for Plasmon

• The plasmons start as frequency is increased
– close to the speed of light line,
– become slightly slower, and 
– turn into a very slow wave (horizontal line) at the 

plasma frequency.
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Surface Topography Can Aid Guided Waves

• Impedance looking into slot is that of a parallel plate 
waveguide terminated in a short.

• Slsot must be narrow compared to a wavelength
• Depth must be >5% of wavelength to contribute.
• For plasmons

– effects might add 
– which wavelength should be used

Harrington 4.8
Corrugated Surface

Impedance looking down into the 
corrugations is inductive.
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Dielectric Waveguides

• Three regions
• Choose TM (or TE)
• Will have Hy, Ez and Ex (Ey, Hx, and Hz)
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Dielectric Waveguide: Physical Nature
Harrington 4.7 Special case of air on top and bottom, thickness a

TM
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• Right hand side is a circle; Left hand side is spikes in tan 
(See H Fig 4-11)

• Odd sin(kyx) variations have no cut-off (always exist) in both 
TM and TE

• Mutiple solutions (intersections) give multiple modes
• Additional new mode about every half wavelength of 

oscillatory variation.
• Weighted by material contrast sqrt (µ1ε1-µ0ε0)

Right Side

Left Side

kx
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ω−β Diagram for Dielectric Guide

• The mode may starts along nAIR at low frequency
• Then transitions toward the nGUIDE
• And asymptotes to NGUIDE
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Dielectric Layer Modes

kx

downward

nAIRnSUB

nG

kz

kDISCRETE

upward

Substrate

Guide

nGUIDE > NSUB > NAIR

kRAD

kDISCRETE

• Discrete guided modes
• Continuum of radiating modes in air and substrate
• TE and TM cases not separated

ksub

kair
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Orthogonality of Modes (Cont.)
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• Apply divergence theorem to cross section, argue 
integral over contour at infinity is zero, and
• finally apply to mode in reverse direction and add
• Result the transverse E crossed Transverse H integrated 
over the cross section is zero when the propagation 
constant of the two modes differs. 
• Apply to find mode amplitudes produced by ETAN and 
HTAN on a cross sectional plane
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Coupled-Mode Concept

• Consider a geometry or material change for which there is an additional 
source of excitation with complex polarization amplitude P

• This polarization can be due to the E field from a strong mode hitting a 
region of missing or added dielectric.

• This polarization source then drives other modes.
• This sourcing of other modes can occur simultaneously among modes 

and is know as coupled modes.
• The distribution of the polarization can also be made periodic in 

distance along the guide to couple in our out planewaves.
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Coupled Mode Formalism (Cont.)
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Periodic Wave Vectors

• The mode k-vector is larger than kO and smaller than kG

• The periodic coupling creates new k-vectors spaced by 2π/Period
• The new k-vectors within the k0 circle correspond to radiation waves
• Move upward vertically from km-1 to find the ky and angle.

ky

km0

kair
km-1 kx

2π/Period

Propagation vector
k-vector diagram

|kmed| = 2π/λmed

|kair| = 2π/λair

km1

2π/Period
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Waveguide Deformations (Cont.)

• Substiture Pt and Pz contributions
• Introduce definitions of transverse and 

longitudinal K’s and rewrite

Kogelnik 2.6
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• Select subset of terms
• Remove residual lack of 

synchronization
• Coupled Equations
• Matrix solution
• Boundary conditions

• Simplification for 
synchronous case

Coupled-Wave Solutions: Co-
Directional
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Coupled-Wave Solutions: Periodic Waveguides

• Film       plus cover
• Sinusoidal height
• Period Λ and k-vector K
• Two ∆ε
• Ec is mode field at surface
• ∆ε z-variation produces (k-

vector shift) 
• N is the effective index

Kogelnik 2.6.41-48
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Coupled Modes as Eigenfunction Problem

• Construct a vector of mode 
amplitudes

• Rate equation can be written 
as derivative of mode vector 
equal to a coupling matrix 
M times mode vector

• Look for source free 
solutions (eigenvalues) by 
substituting an arbitrary 
exponential variation

• Determinant constrains 
arbitrary exponential 
(eigenvalues)

Use to check Kogelnik Solution in Eq. 2.6.30-31.
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Coupled Mode: vg and vp Same Direction

When the group and phase velocities are in the same direction
• The eigenvalues (β’s) move away from each other
• The displacement is proportional to the coupling coefficient
• The eigenfunctions (Super Modes) associated with eigenvalue (β) 

continuously change identity in passing through the crossing point

ω

β

Haus 7.6
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Radiating Zones

• Near (Static) Zone   d << r << λ
– Exponential is unity, => static and no radiation

• Intermediate (Induction) Zone d << r ~ λ
– General expansion required

• Far (Radiation) Zone   d << λ <<  r
– Approximate denominator as 1/r
– Approximate exponential as quadratic => Fresnel 
– Or Approximate exponential as linear => Fraunhoffer
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Electric Dipole Fields and Radiation

• Approximate exponent as 
constant

• Apply iωρ = Div J
• Integrate by parts
• Fields are perpendicular to n 

and perpendicular to each 
other

• Both E and H decrease as 1/r
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Poynting Vector for Electric Dipole

• Poynting vector gives power 
density per unit solid angle

• Substitute for fields
• Sin squared polar angle
• Integrate over azimuthal and 

polar angles to get net power 
radiated.
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Aperture Radiation

• Rectangular current patch flowing in x direction over
-a/2 < x < a/2
-b/2 < y < b/2

• Plug in Fraunhoffer approximation for A
• Factor to F(x)G(y)
• View as product of two Fourier Transforms
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Antenna Array Patterns

• Composite Array id built from a element 
instantiated at array positions (convolution 
of element with space array factor)

• FT of convolution is product of FT’s
• Composite pattern is the array pattern times 

element pattern.

Composite

Array Factor

Element
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Scattering by Dipoles Induced in Small Scatterers

• Incident fields induce electric and magnetic dipole 
moments

• Far fields from are then found from these moments
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Scattering from a Small Dielectric Sphere

• Dipole p is in the direction of the incident field and equal to the 
static polarization (same weight factor and proportional to volume).

• Radiation is proportional the observation polarization direction
dotted with the incident polarization. This gives cosθ in one angle 
and constant in φ.

• Strength is 6-th power of size (volume squared) and 4-th power 
relative to size in wavelengths. (This explains the creation of the 
blue sky success of horizontally polarized sun glasses).

• Strongest and equal in forward and backward directions.
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Scattering from a Small p.e.c. Sphere

p and m
• Both exist
• Are at right angles
• Interfere coherently 

– produce a + b cosθ type patterns
– low forward (1/3) and high backward (2x) scattering
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Kirchhoff Approximation Representation

• Apply to Screen with aperture
• Assumptions

– ψ and its normal derivative vanish except on opening
– ψ and its derivative are equal to the those incident on aperture with 

no screen
• Inherent inconsistencies

– Since scattered field is zero everywhere on screen it is zero 
everywhere

– Integral does not yield the assumed values on the openings
• Enforcing either Dirichlet or Neuman Boundary Conditions 

results in a consistent formulation
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Vector Integral Representation for Far Field

• Start with x in volume and interaction integral
• Treat x as singular point plus rest of volume
• Apply divergence theorem
• Use free space Green Function
• Integral on surface at infinity goes to zero
• Rewrite in transvere only components of E and B on surface
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Diffraction by a Circular Aperture Far Field

• Plane wave in x-z plane incident from below
– ETAN reduced by cos α; linear phase in x direction

• Find field in direction k 
– linear phase in x and y directions
– Combine all phases; recognize azimuthal integral as J0; integrate in ρ => J1

• Result is J1(v)/v with weighting for tangential components of arrival 
and scattering
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Scattering in the Short Wavelength Limit

• Shadowed Region Contribution
– Boundary Condition Es = -Einc; Bs = -Binc

– Small Ave except forward => depend only on projected area (diffraction 
pattern from the shadow)

• Illuminated Region Contribution
– Boundary Conditions Es = -Einc; Bs = -Binc SAME as Ill.!!!
– Normal difference gives sign difference and different result
– Stationary phase brings our specular surface contributions

• Shadow diffraction can dominate in forward direction
– See Figure 10.16

shadow
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illuminated
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Planewave Expansion

• Start from Transverse components of E and B on plane
• Make planewave spectrum expansion between mask and lens 

(assume periodic and switch to ejwt)
• Lens then low pass filters and apodizes/phases transmitted 

spectrum
• Propagation to image plane is thus the Fourier Transform of the 

filtered/phased spectrum 
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Electric Field as Sum of Plane Waves
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Electric Field Spectrum M(u) from E(x)
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Polarization Effects at High NA

Parallel Orientation Perpendicular Orientation

Etotal
Etotal

Vector Addition

EX ~cosθ
IMAX ~(cosθ)2

EZ ~sinθ
IMIN ~(sinθ)2

IMAX Issue IMIN Issue
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Alternating Phase-Shifting Mask

Sheats and Smith

P P

P P/2 Frequency 
doubled

Perfect Null
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Electric Field within Resist

Air

Resist

Substrate

n1

n2

n3

5 waves
match boundary conditions
(or use signal flow analysis)
use definition of τD
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Reflection and Transmission
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Reflection and transmission coefficients in going from media i to media j

Example: air to quartz (nqz = 1.5); ρ = -0.2 and τ = 0.8

Note: 1 + ρ = τ

Phase change and attenuation with distance z

Example: complex propagation 
factor in going from z=0 to z=D is
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The same net complex factor occurs 
for the upward wave in going from 
z=D to z=0.


