EE 210 Applied EM Fall 2006, Neureuther Lecture #26 Ver 11/30/06

EE243 Advanced Electromagnetic Theory
Lec # 26 Review for Final Exam

* Final Exam Specification Sheet (see handout)
o (Gives sections of Jackson, Kogenik and Harrington)
e Guided Waves
e Lec 13-14; HW 7.1-7.2;
* Dielectric, Corrugated and Plasmon Waveguides
e Lec 15-20; HW 7.3, 8.1-8.3
» Radiation and Scattering
e Lec 21-25; HW 9.1-9.3

Reading: Summarized on Final Exam Specification
Sheet
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Lecture #26 Ver 11/30/06

Magnetic/Electric Duality

Harrington 3.2

Electric Sources

VxH =—-iwsE +J
VxE =iouH

€L
|l
<
X
>

Magnetic Sources

VxE =iouH - M
VxH =-iweE
E=-VxF

1 I\Weik\X—x’\ .

F= —d°x
RN EE

* Dual equations for problems in which only
an electric source J or only a magnetic

source M are present.
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Source Free Region
Harrington Strategy 3.12

1

VIR K2A_o E=-VxF+ a),uA+EV(V A)

V’F +k“F =0 ﬁZVXK-FiC()IE-F_iV(V'If)
i

 With the Lorenz gauge A and F satisfy the wave equation
and the fields are give by above equations.

e Choosing the vectors A and B to only be in the z direction
IS adequate.

Each potentially contributes 5 components of the E,H
combination.

Copyright 2006 Regents of University of California
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Vector Potential in z Direction

A=uyi F:Wa
c_ 1 Oy EX:_EW
" —iwe oxoz 5
1 3y E, =2~
== i 0z o
—lwe oy E =0
2
E, = .1 az_l_kzw 1 azw
—lwe \ 02 H, =—
—lwwu OXoz
HX:8_W g1 o0y
5)6; * —iou oyoz
/4
H —_—— 2
y ax HZ: .1 (62+k2jw
H =0 —laou\ oz 4
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Jackson Strategy Eq. 8.26

[Vtz + (,uga)2 —k? )]E =0 Jackson 8.2

E=EZ+E

_ 1 i

E = (et - kz)[kvth —wixV B,]

= 1
(,uga)z —K

2)[kVtBZ + i x V E, |

« E and B satisfy wave equation with transverse
operator and —k?

e Break up E and B into longitudinal and transverse
» Transverse fields can be found from E, and B..

Copyright 2006 Regents of University of California
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Waveguide Simplifications (Revised)

E, = i%VE e Set Boundary Condition
B 7i/k B — If TEEz =0 o0n p.e.c. sidewall.
B,=+—V,B, — If TM use 8.26 to get normal
V derivative of Bz =0
7" = pew” —K* » Solve for Ez and/or Bz
H, =i712>< E, « Then use gradient to find the
assoclated transverse B or E
Loy = a‘; = lf Jg e Use impedance to find the
° assoclated transverse E and B
7z =HY Ky |4 (or use 8.26)
K K Ve

Copyright 2006 Regents of University of California
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Rectangular Waveguide Example (TM)

y
T
b . Mmax, . N
E,..= E05|n(—)sm(—7zy
a b
2 2
X 2 _ 72_2 m n n
a 7mn [az b2
v=E ik
AN E, = E,—5—cos( )sin( )
+——+ = a
(ax2 oy* 4 jW y“;(”
ikr .
W|S:O Ey = EO mS'ﬂ( )COS( )
. |k mn
E=tx—Vw :
o H, =-E, L —sin( )cos( )
o +1 . — LY D
=—17X .
Sz H, =E, k7 —cos( )sin( )
k kK |u L Vi @
Loy = =
we Kk, \e& ,
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Fields Generated by a Localized Source
y

N <« =

Source J

To find amplitude of a given mode propagating to
the right

» General expansion for modes to right

« Assume the given mode of arbitrary amplitude is
propagating to left from outside the boundary

* Apply reciprocity to the volume for these two sets
of fields

Copyright 2006 Regents of University of California
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Fields Generated by a Localized Source (Cont.)
y

A

e (= n
S —

: Source J

Apply reciprocity to the volume for these two sets of fields
 Integral over wall is zero
» Integral over left cut-plane is zero as all modes going same direction

« Integral over right cut plane is proportional to outgoing mode
amplitude times incoming mode amplitude

 Intergral over the source measures the component of the source with
the x,y eigenfunction variation as well as phase coherence with z and
IS proportional to incoming mode amplitude

» Ratio cancels incoming amplitude and gives outgoing amplitude.

Copyright 2006 Regents of University of California
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Representation of Fields in Guide

e Localized source J creates
waves
E* =ZA*[E (x,y)+E,, (X y)]e“kﬂZ
— Pt 22\ — Index A goes over TE, TM,

S Ao Lk
R A — To right of source only

E-_SAlE _E +ik, 2 waves to +z and sum over
; BB all TE and TM modes that

=3 A HL () +HL (x ) propagate
P — To left of source only waves

E-_ =C;[E,(xy)-E,(x y)k™ to —z and sum over all TE
I:TE_ST B C‘[ e T 0 ]eﬂklz and TM waves
o = G Hu (X Y) + R () — To left fields have signs
altereddivE=divH=0

— Test wave from outside

going to left across volume
10

L|
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Apply Reciprocity Formulation

V- (ETEST xH; —E; xHger ): J - Eresr
js (ETEST xH7 —E; xH o ) nda = '[/ J-E erd°X

e Source J produces the modes leaving the localized
source region with amplitudes A,

e Source free TEST wave enters the volume and
takes a measure of E

o Take Poynting Theorem like interaction

11
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Are There Waves on Material Surfaces?

X

1 = dielectric 7

2 = metal

H,, = H,Je "e"~
H . sze+v2x |k 4

Vlz\/kzz_w Hoéy
2 2
Vs :\/kz — 0 e,

o Consider TM w/r z case with Hy given and same z phase
variation

« Will have Hy, Ez and Ex (but Ey = Hx = Hz = 0) 1

Copyright 2006 Regents of University of California
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Boundary Conditions

* Hy continuous (or) D normal
continuous gives Hyy =H,,.

_y e Ez continuous gives final
B, =———H, constraint to find k,.
: » This constraint is the same as
E -tV setting the iImpedance looking
* —iwe, upward equal to the negative of
iy iy the impedance looking
Lo 2 downward.
£ & * Impedance looking upward Is
E, E, capacitive (neg imy).
Hy, H,, » Impedance looking downward
thus need to be inductive.
_z o o=—H TV g

—lwg, —lwe,
13
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Solving for Surface Wave Conditions

v, _ -V, e Constraint
R o Substitute definition of v,
v, = K2 — 0 s, and v, to solve for k,.
v, =k -0 ez,  Substitute solution for k, to
=k \/(5 gfg) find other prope_rtle_s |

2 T & — v, and v, (localization in x)
v, = kl\/(gz_flgl) — Resolution in z with large k,

— Probe height in x

14
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o—3 Diagram for Plasmon

w/ky=C

f = 27z(3-10”nm/s)/ A
f =(1.89-10®nm/s)/320,, =5.9-10"

e The plasmons start as frequency Is increased
— close to the speed of light line,
— become slightly slower, and

— turn into a very slow wave (horizontal line) at the

plasma frequency.
15
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Surface Topography Can Aid Guided Waves

Harrington 4.8

Corrugated Surface Z. ] A an k,d =—i377tank,d
X ‘1
Zdown 7 —V]
mn
> Z

k, =koy/1+tan?k,d

Impedance looking down into the
corrugations is inductive.

* Impedance looking into slot is that of a parallel plate
waveguide terminated in a short.

 Slsot must be narrow compared to a wavelength
e Depth must be >5% of wavelength to contribute.

* For plasmons
— effects might add

— which wavelength should be used

16
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Dielectric Waveguides

eja)t
Exponential
decay

Moo z

e—jkzz

2 2
Vo :\/kz — 0 Hyéy

_ 2 2 € Oscillatory
K, =y @ ptpel—k’ L€ )

_ 2 2 o€y Exponential
Vo = \/kz — 0 &, decay

e Three regions
e Choose TM (or TE)
 Will have Hy, Ez and Ex (Ey, HX, and Hz)

17
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Dielectric Waveguide: Physical Nature

Harrington 4.7 Special case of air on top and bottom, thickness a

t Left Side
™ L ¥
ka, ko & va : .
odd 5 tan =2 =2 Right Side

"K
 Right hand side is a circle; Left hand side is spikes in tan

(See H Fig 4-11)

e QOdd sin(k x) variations have no cut-off (always exist) in both
TM and ﬁE

« Mutiple solutions (intersections) give multiple modes

* Additional new mode about every half wavelength of
oscillatory variation.

» Weighted by material contrast sqrt (L,&;,-144€0)

X

18
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o—p Diagram for Dielectric Guide

w/ky=C

/K, = c/ng

——

Slab In air

f = 272(3-1017nm/s)/ A
f =(1.89-10®nm/s)/320,, =5.9-10'

 The mode may starts along n,  at low frequency
 Then transitions toward the ng,pe
* And asymptotes t0 Ngype

19
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Dielectric Layer Modes

\

} Guide

Substrate

Nsuipe = Nsug > Nar

e Discrete guided modes

« Continuum of radiating modes in air and substrate
 TE and TM cases not separated

Copyright 2006 Regents of University of California
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Orthogonality of Modes (Cont.)
v.(E, xH +E.xH,)-i(8 -8, )E, xH;,+E; xH,,)=0

» Apply divergence theorem to cross section, argue
Integral over contour at infinity is zero, and

e finally apply to mode in reverse direction and add
 Result the transverse E crossed Transverse H integrated
over the cross section is zero when the propagation
constant of the two modes differs.

» Apply to find mode amplitudes produced by E,\ and
H. Ay ON a cross sectional plane

a, = [[dxdy(E, x H, + E xH,)

o0

b, = ”dXdy(Exﬁ:—E:xﬁt)

21
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Coupled-Mode Concept

X \ Exponential
deca
Hoeq Y Z
I_ L I >
I - [ Qscillatory i
L€, Exponential
decay

» Consider a geometry or material change for which there is an additional
source of excitation with complex polarization amplitude P

» This polarization can be due to the E field from a strong mode hitting a
region of missing or added dielectric.

» This polarization source then drives other modes.

» This sourcing of other modes can occur simultaneously among modes
and Is know as coupled modes.

» The distribution of the polarization can also be made periodic in
distance along the guide to couple in our out planewaves.

22
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Coupled Mode Formalism (Cont.)

V(E,xH, +E, xH,)=—jaP,-E, + joP; -E1

P=AsE
P =AgE,
da,
dz uRy — _JCOJ‘_“ dXdyl:)TOT
db,,
4z J:Bubﬂ = JC‘)” dXdyPTOT =

23
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Periodic Wave Vectors

Propagation vector

k-vector diagram !
K, ok—m»l

|kmed| = 27t/7\*med E

|kair| = 2Td}‘“air >E

2nt/Period

The mode k-vector is larger than k, and smaller than kg

The periodic coupling creates new k-vectors spaced by 2r/Period
The new k-vectors within the k, circle correspond to radiation waves
Move upward vertically from k., ; to find the k,, and angle.

24
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Waveguide Deformations (Cont.)

Kt =co”dxdyAgEv E; Kogelnik 2.6
E = =
K, =o||dxd AeE, -E
vu _[OJ‘ yg—l—Ag v Zu

’ _ A\/ K\tu 4 szu (B —Pu)z
A=-12 ( t .
+ BV (KVU o I‘<VZU J(IBV+IBU)Z
’ _ A\/ K\tu _ K\/Zu —1(By+Bu)z
B, = JZ{ (

+ BV (K\tu + KVZU j(ﬂv_ﬂu)z

e Substiture Pt and Pz contributions

e Introduce definitions of transverse and
longitudinal K’s and rewrite

Copyright 2006 Regents of University of California
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Coupled-Wave Solutions: Co-

A = jxBe 2% Directional Kogelnik 2.6.25-31
B’ =— jxAe’”
A=Re™*

e Select subset of terms

B=Se!” _
R'— joR = — &S  Remove residual lack of
S'+ j65 = — kR synchronlzatlor_1

R(0)=1 » Coupled Equations
s(0)=0  Matrix solution

Boundary conditions

« Simplification for
z)=cos(xz) synchronous case

26
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Coupled-Wave Solutions:nPeriodic Waveguides

C
‘ | h  Ah=half height of variation ~ N; ‘Kogelnik 2.6.41-48

e Film n; plus cover n,
 Sinusoidal height
e Period A and k-vector K

h(z)=h, + Ahcos(Kz)
K=2x/A

2 2
Ag = go(nf —nc)

2 2 e Two Ae
Agz—go(nf —nc) _ _
- * Ec 1s mode field at surface
Ki = o [ dXAE; * Ag z-variation produces (k-

vector shift)
N is the effective index

K; . ~ 0E? [dxAs

1 2[~2 2 jKz - jKz)
K, _, ® wgyE; (nf —N; )Ah(e +€ )

7 Ah ni_NZ
M Ahg N

Copyright 2006 Regents of University of California
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Coupled Modes as Eigenfunction Problem
Use to check Kogelnik Solution in Eqg. 2.6.30-31.

|  Construct a vector of mode
Xy=9a, ¢ amplitudes
a  Rate equation can be written
- as derivative of mode vector
B __ equal to a coupling matrix
X,=M- X, M times mode vector
— R * Look for source free
Xy =—JAX, solutions (eigenvalues) by
g -1 _ substituting an arbitrary
=M — JAI [ X,  exponential variation

— o * Determinant constrains
Det|M — JA 1 =0  arbitrary exponential
' ' (eigenvalues)

28
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Coupled Mode: v, and v, Same Direction

N Haus 7.6
()

When the group and phase velocities are in the same direction
* The eigenvalues (3’s) move away from each other
» The displacement is proportional to the coupling coefficient

» The eigenfunctions (Super Modes) associated with eigenvalue ()
continuously change identity in passing through the crossing point

29
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Radiating Zones

e Near (Static) Zone d<<r<<A
— Exponential is unity, => static and no radiation

 [ntermediate (Induction) Zoned <<r~A
— General expansion required

« Far (Radiation) Zone d<<A<<r
— Approximate denominator as 1/r
— Approximate exponential as quadratic => Fresnel
— Or Approximate exponential as linear => Fraunhoffer

Approximated by

ikr I I
~roN Mo € p i\ kmr)gs.,,  Projection parallel to n
A(X)= " IJ(X)E‘ d°X"In Fourier transform

Copyright 2006 Regents of University of California

ba

30



EE 210 Applied EM Fall 2006, Neureuther

Electric Dipole Fields and Radiation

Lecture #26 Ver 11/30/06

A(x)= 40 [ 3(x) S g = #4625 e”

A ‘X— X' 47 r
p= If'p(f’)d X Approximate exponent as
k2, e constant
H =7 —(xp) Apply iwp = Div ]
E=ZHxn Integrate by parts

Fields are perpendicular to n
and perpendicular to each
other

Both E and H decrease as 1/r

31
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Poynting Vector for Electric Dipole

aP _ ERe[rzﬁ, E x q*] . Poyn_ting vect(_)r gi\{es power
density per unit solid angle
P _c'Z, é{(nx p)xnf * Substitute for fields

« Sin squared polar angle

=—"0k*|p’[sin0 < Integrate over azimuthal and
, polar angles to get net power
p_ % | p’ radiated.

32
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Aperture Radiation

/

|IX—=X'=r—n-X

K(K):ﬂe ’J—(T)gik(ﬁ-x')d 3y

g/?//l, ‘ Adr r -
! ke o -
y K(K):ﬂe /Zelkx dX,jb/Z e|ky dyr

X Agr t J-al2 b/2

K(X):ﬂgab{sin(kaxmr)sin(kay/2r)}
kax/2r kay/2r

* Rectangular current patch flowing in x direction over
-a/l2 <x<al2
-b/2 <y <hl2

e Plug in Fraunhoffer approximation for A

e Factor to F(X)G(y)

* View as product of two Fourier Transforms 13

Copyright 2006 Regents of University of California
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Antenna Array Patterns

Composite X X XX %
N NN NN

O o— O — O —

Element \

e Composite Array id built from a element
Instantiated at array positions (convolution
of element with space array factor)

e FT of convolution is product of FT’s

e Composite pattern Is the array pattern times
element pattern.

Array Factor

34
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Scattering by Dipoles Induced in Small Scatterers

E o E e Jackson 10.1.A
H —A Einc
Hinc 0 X ZO
p =induced _electric _dipole
m = induced _magnetic _dipole
L 1 , eikl’ o o
E. = K [(Axp)xn—nxm/c]
Are, r
H —nA Esc
H,.=nx Z,

 Incident fields induce electric and magnetic dipole
moments

e Far fields from are then found from these moments

35
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Scattering from a Small Dielectric Sphere

p=47r80(5r _1]a3EmC Jackson 10.1.B
g +2
‘T’ do - - 5—12A* 1
. . — _k4 6 r
yL /A“/ g MEG)=KaT i o A .
Einc A’L‘p do 8 £ —12 ‘/¥
o=|—dQ=—"k*a’=
dQ 3 g +2

* Dipole p is in the direction of the incident field and equal to the
static polarization (same weight factor and proportional to volume).

« Radiation is proportional the observation polarization direction
dotted with the incident polarization. This gives cosO in one angle
and constant in ¢.

« Strength is 6-th power of size (volume squared) and 4-th power
relative to size in wavelengths. (This explains the creation of the
blue sky success of horizontally polarized sun glasses).

o Strongest and equal in forward and backward directions.
Copyright 2006 Regents of University of California
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Scattering from a Small p.e.c. Sphere
P = 4re,a’E, Jackson 10.1.C

pand m
e Both exist
e Are at right angles

* Interfere coherently

— produce a + b cos6 type patterns
— low forward (1/3) and high backward (2x) scattering

37
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Kirchhoff Approximation Representation
Jackson 10.5

_ 1 ce™ | . i \R , I
l//GEN (X):—Eiﬁn |:V l//+|k(1+ﬁ)ﬁl//:|da
1 e"® i \n'-R
v)— _ 1 o '
o®)=5q {1 e e .

Apply to Screen with aperture

Assumptions
— 1w and its normal derivative vanish except on opening

— y and its derivative are equal to the those incident on aperture with
no screen

Inherent Inconsistencies

— Since scattered field is zero everywhere on screen it is zero
everywhere

— Integral does not yield the assumed values on the openings

Enforcing either Dirichlet or Neuman Boundary Conditions
results in a consistent formulation

38
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Vector Integral Representation for Far Field

E(x)=¢$[E("-v'G)-G(W-V')E ba

E(x)=flio('xB)G + (0" E)xV'G + (7" -EV'G fia

ikr’
ikA'-X

G- -e

Anr |
E/%) >Rk k)

Jackson 10.7

. F(k.k,) —§e'kX[we (W'xB,)+6 - (kx (0" E, ) da

o Start with X In volume and interaction integral
o Treat x as singular point plus rest of volume

* Apply divergence theorem

e Use free space Green Function

 Integral on surface at infinity goes to zero

* Rewrite in transvere only components of E and B on surface

Copyright 2006 Regents of University of California
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Diffraction by a Circular Aperture Far Field

=/ ieikrE COS a 27 ikp[sin & cos f—sin O cos(p—
E(x): 2311’ Offopdpjo d,Bek”[ psingcos(¢—p)]

gz(sinz9+sin2a—23inesinacos¢)y2
1 (27 | ) Ciorcos s
o[, apet e = 3, (ko)

_ g™ —_J,(ka
E(X)= : aZEOCOSa(ker)llET;)

Einc B, _iny dir

ap_ P cosa (ka) (0032 & +cos’ gsin’ 91—2‘]1(@5)
dQ A ka&
P :(ZE—OZ}zaZ cosa
« Plane wave in x-z plane incident from below

— E;,n reduced by cos a; linear phase in x direction
 Find field in direction k

— linear phase in x and y directions

— Combine all phases; recognize azimuthal integral as J,; integrate in p =>J,
 Result is J;(v)/v with weighting for tangential components of arrival

and scattering

Copyright 2006 Regents of University of California
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Scattering In the Short Wavelength Limit

Z
" shadow
N IHluminated
Y

e Shadowed Region Contribution
— Boundary Condition E, = -E; .; B, = -B;,,.
— Small Ave except forward => depend only on projected area (diffraction
pattern from the shadow)
 llluminated Region Contribution
— Boundary Conditions E = -E; .; B, = -B,,. SAME as Ill.!!!

— Normal difference gives sign difference and different result
— Stationary phase brings our specular surface contributions

» Shadow diffraction can dominate in forward direction

— See Figure 10.16

41
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Planewave Expansion

E ) er Flk.ko) Jackson 10.7
¢ Flok)- 4L e 8" (1'x B,) + & - (k x (0" x E, ) [da’
TS, |
Example for a ETOTAL — Z Ene_j(ko sin(6,, )X, +ko cos(éh0)z,)
mask with period .

P in x direction. ETOTAL _ ZN: E A(H _)ejcb(em )e— j (ko sin (6, )% +ko cos(6ni )z;)
n ni
n=—N

Start from Transverse components of E and B on plane

Make planewave spectrum expansion between mask and lens
(assume periodic and switch to ei*t)

Lens then low pass filters and apodizes/phases transmitted
spectrum

Propagation to image plane is thus the Fourier Transform of the
filtered/phased spectrum

Copyright 2006 Regents of University of California
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Electric Field as Sum of Plane Waves
Simplify to (x,z) plane, E in y-direction, A=1, ® =0

Mask with period P Bragg Condition Implies

Siﬂ(@n)z% cos(d, )= |1~ (Mj

P

K, =k, X+k, 2 =k;sin(6, Jx+k, cos(@zn )
E o = Z E e J(kosm( o )x+kq cos(én Z E e _J(kn X)

Three wave case for on-axis illumination of mask with period P

27

E —E —jepxr—mcosl0,4)2) —j(0—5-x+—=cos(6, )z) _ i (5x+==co0s(0,;)z)
TotaL — E1€ e - +Eqe e %) +E_€ P2 (0:)

43
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Electric Field Spectrum M(u) from E(x)

f(x)
A

l—| A|—' H m(x) = A- rect( P); 2) * comt{éj
< z

3X  2X X 0 X 2X 3X

Figure 18 A periodic rectangular wave, representing dense mask features.

:’/L\?@ M) = F{m(x)} = F{A. rect(PL/Zj}- F{comb(é)}

Alrm
.'. 1+ '-‘
P . ;I T 3uo /flin A . u | &
SN | ST MU= sing o - 200Ut
-Af3x

N=—o0

Figure 19 The amplitude spectrum of a rectangular wave, A/2 sine(uf2ug). This is
equivalent to the discrete orders of the coherent Fraunhofer diffraction pattern. uo — 1 /P

Values are Y2, 1/w, 1/3w, 1/57

Sheats and Smith 1
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Polarization Effects at High NA

Parallel Orientation Perpendicular Orientation

o = Essmmmmas > . | :' . .:. .
Vector Addition "¢
lax 1SSUE Ly 1SSUE
Ey ~ :
| X CO(SO ) E, ~sin®

~(cosb)?.# .

MAX ‘0“ IMlN ~(S|ne)2 > > >

og.:: ....... > — >

: Etotal E
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Alternating Phase-Shifting Mask

(a) P (b) P
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Figure 64 Schematic of (a),a conventional binary mask (b) an alternating phase shift
mask. The mask electric field, image amplitude, and image intensity is shown for each.

Sheats and Smith
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Electric Field within Resist

Arr n | 5 waves
1 match boundary conditions
Resist (or use _si_gpal flow analysis)
use definition of 1,
n,
[ Downward wave
Substrate 4 _
Round trip Upward wave
N3 propagation 1

. e—jkzz &_Zeﬂkzz
Eresist (X, Y:2) = Ear inc (X Y) 12( _ P2XD )

2
S /'/]{,012,023% _
Transmission in Round trip

\ .
Reflection at substrate loop gain
P2 = P (loss)
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Reflection and Transmission

Reflection and transmission coefficients in going from media | to media j

n —n. .
__! Ti.:i Note:1+p=r+
N +1; bon 4,

Phase change and attenuation with distance z

Lij

Example: air to quartz (n,, = 1.5); p=-0.2and 1 = 0.8

: N
- j(ne+ jm )2

o(z)=¢ Fa
Example: complex propagation The same net complex factor occurs
factor in going from z=0 to z=D is for the upward wave in going from
z=D to z=0.
. .\ 2T
—j(n,+jn, ) ==D
TD — e /1air
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