Design Goal 2

\[G_{TV} = 10 \, \text{dB} \quad \text{from} \quad 0 - 2 \, \text{GHz} \quad F < 4 \, \text{dB} \]

Note:

\[
G_0 = |S_{21}|^2 = \begin{cases}
14 \, \text{dB} & f = 1 \\
11.8 \, \text{dB} & f = 1.5 \\
10 \, \text{dB} & f = 2
\end{cases}
\]

\[
G_{s\max} = \frac{1}{1 - |S_{11}|^2} = \begin{cases}
2.29 \, \text{dB} \\
1.94 \, \text{dB} \\
1.86 \, \text{dB}
\end{cases}
\]

\[
G_{l\max} = \frac{1}{1 - |S_{21}|^2} = \begin{cases}
4.25 \, \text{dB} \\
3.74 \, \text{dB} \\
3.59 \, \text{dB}
\end{cases}
\]

For simplicity, since \(|S_{11}| < 0.64 \) over the entire range, let's make \(G_0 = 1 \), i.e., no matching network on input side.

Thus, we require \(G_{l\max} = \begin{cases}
-4 \, \text{dB} @ 1 \, \text{GHz} \\
0 \, \text{dB} @ 2 \, \text{GHz}
\end{cases} \)

The constant load circles:

\[C_l = \frac{9L S_{22}^*}{(1 - (1 - 9L) |S_{22}|^2)} \]

\[R_l = \frac{\sqrt{1 - S_{22}^* (1 - |S_{22}|^2)}}{1 - (1 - 9L) |S_{22}|^2} \]

<table>
<thead>
<tr>
<th>(f)</th>
<th>(C_l)</th>
<th>(R_l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25 , \text{dB}</td>
<td>0.74</td>
</tr>
<tr>
<td>2</td>
<td>0.48 , \text{dB}</td>
<td>0.49</td>
</tr>
</tbody>
</table>
For a noise figure, we have the following noise circles:

<table>
<thead>
<tr>
<th>f</th>
<th>N</th>
<th>CF</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.245</td>
<td>0.214</td>
<td>82°</td>
</tr>
<tr>
<td>1.5</td>
<td>0.448</td>
<td>0.18</td>
<td>61°</td>
</tr>
<tr>
<td>2</td>
<td>0.859</td>
<td>0.22</td>
<td>88°</td>
</tr>
</tbody>
</table>

These circles are plotted on the Smith chart. The optimum source impedances are also shown. Notice that the origin is inside these circles so the noise will be lower across the band without a matching network. In fact, \(F_{50} = \tilde{F}_{\text{min}} + \frac{4R_N}{20} \frac{\left| \Gamma_{\text{opt}} \right|^2}{1 + \left| \Gamma_{\text{opt}} \right|^2} \)

And this is much less than the spec so we can safely ignore noise with a 50Ω input source. Since the device is assumed unilateral, the load can be chosen independently to give best gain performance.

On the Smith chart, the -4.08 and 0.03 gain circles are plotted for the load at 16GHz and 26GHz. Any load impedance on the -4.03 chart that moves to the 0.03 chart from 1-2.6GHz is an acceptable solution.
The following arch is chosen (L-L match)

\[
\begin{align*}
L_2 & \quad 50 \\
\quad 50 & \quad 0 \\
\quad 2 & \quad 1 \quad 2 \\
0.08 & \quad 0.16 \\
0.08 & \quad 0.16 \\
L_1 & = \frac{Z_0}{0.9 \cdot \omega L} = 4.92 \text{ nH} \\
L_2 & = \frac{0.08 Z_0}{\omega} = 318 \text{ pH}
\end{align*}
\]

We desire to find a point on the \((1+jb)\) circle (shown in red) such that a series reactance will move it to the constant gain circle in such a way that \(b_1/b_2 = 2\) (ratio in freq). By trial and error we find that \(1-0.9j\) at 2GHz requires \(0.08j\) of series reactance and \(1-1.8j\) at 16GHz requires about \(0.16j\) of series reactance, exactly in the correct proportion:

A simulation of the obtained gain over the entire band is shown in the following page. The gain deviates by 0.1dB at the band edges and 0.3dB near the center.
* BPTM 65nm NMOS

```plaintext
model nmos bsim4\n  \binunit = 1            \paramchk= 1            \mobmod = 0            \geomod = 1            \
capmod = 2            \igcmod = 1            \igbmod = 1            \
diomod = 1            \rdsmod = 0            \rbodymod= 1            \rgatemod= 1            \
permod = 1            \acnqsmod= 0            \trnqsmod= 0            \ 
  \tnom = 27            \toxe = 1.7e-9            \toxp = 1e-9            \toxm = 1.7e-9            \
dtox = 0            \epsrox = 3.9            \wint = 5e-009            \lint = 1.6e-008            \
  \l = 0            \wl = 0            \lln = 1            \wln = 1            \
  \lw = 0            \ww = 0            \lwn = 1            \wwn = 1            \
  \lwl = 0            \wwl = 0            \xpart = 0            \toxref = 1.7e-9            \
  \vth0 = 0.22            \k1 = 0.43            \k2 = 0.01            \k3 = 0            \
  \k3b = 0            \w0 = 2.5e-006            \dvt0 = 3.5            \dvt1 = 0.55            \
  \dvt2 = -0.032            \dvt0w = 0            \dvt1w = 0            \dvt2w = 0            \
  \dsub = 1            \minv = 0.05            \voffl = 0            \dvtp0 = 1.2e-008            \
  \dvtp1 = 0.1            \lpe0 = 5.75e-008            \lpeb = 2.3e-010            \xj = 2.5e-008            \
  \ngate = 5e+020            \ndep = 2.6e+018            \nsd = 1e+020            \phin = 0            \
  \cdsc = 0.0002            \cdscb = 0            \cdscd = 0            \cit = 0            \
  \voff = -0.15            \nfactor = 2            \eta0 = 0.24            \etab = 0            \
  \vfb = -0.55            \u0 = 0.06            \ua = 1e-010            \ub = 1e-017            \
  \uc = -3e-011            \vsat = 1.2e+005            \a0 = 1.5            \ags = 1e-020            \
  \al = 0            \a2 = 1            \b0 = -1e-020            \bl = 0            \
  \keta = 0.04            \dwg = 0            \dwb = 0            \pclm = 0.12            \
  \pdiblc = 0.02            \pdiblc2 = 0.02            \pdiblc = -0.005            \drout = 0.5            \
  \pvag = 1e-020            \delta = 0.01            \pscbe1 = 8.14e+008            \pscbe2 = 1e-007            \
  \fprout = 0.2            \pdits = 0.2            \pditsd = 0.23            \pditsl = 2.3e+006            \
  \rsh = 5            \rdsw = 160            \rsw = 150            \rdw = 150            \
  \rdswmin = 0            \rdwmin = 0            \rswmin = 0            \prwg = 0            \
  \prwb = 6.8e-011            \wr = 1            \alpha0 = 0.074            \alphal = 0.005            \
  \beta0 = 30            \agidl = 0.0002            \bgidl = 2.1e+009            \cgidl = 0.0002            \
  \egidl = 0.8            \
  \aigbacc = 0.012            \bigbacc = 0.0028            \cigbacc = 0.002            \
  \nigbacc = 1            \aigbinv = 0.014            \bigbinv = 0.004            \cigbinv = 0.004            \
  \eigbinv = 1.1            \nigbinv = 3            \aigc = 0.012            \bigc = 0.0028            \
  \cigc = 0.002            \aigsd = 0.012            \bigsd = 0.0028            \cigsd = 0.002            \
  \nigc = 1            \poxedge = 1            \pigcd = 1            \ntox = 1
```

nmos65.scs Thu Apr 24 09:11:53 2003 1
xrcrg1 = 12 xrcrg2 = 5
gso = 5.458e-010 cgdo = 5.458e-010 cgbo = 2.56e-011 cdg1 = 2.653e-10
csl = 2.653e-10 cappas = 0.03 cappad = 0.03 acde = 1
om = 15 noff = 0.9 voffcv = 0.02
kt1 = -0.11 kt1l = 0 kt2 = 0.022 ule = -1.5
uai = 4.31e-009 ubl = 7.61e-018 ucl = -5.6e-011 prc = 0
at = 33000
fnoimod = 1 tnoimod = 0
ss = 0.0001 jsws = 1e-011 jswgs = 1e-010 njc = 1
ijthsld= 0.01 ijthsrew= 0.001 bvs = 10 xjbvs = 1
jsd = 0.0001 jswd = 1e-011 jswdg = 1e-010 njd = 1
ijthdld= 0.01 ijthdrew= 0.001 bvd = 10 xjbvd = 1
pbs = 1 cjs = 0.0005 mjs = 0.5 pbsws = 1
cjsws = 5e-010 mjsws = 0.33 pbswgs = 1 cjswgs = 3e-010
mjswgs = 0.33 pbd = 1 cjd = 0.0005 mjd = 0.5
pbwd = 1 cjswn = 5e-010 mjswn = 0.33 pbswgd = 1
cjswgd = 5e-010 mjswgd = 0.33 tpb = 0.005 tcj = 0.001
npbsw = 0.005 tpcsw = 0.001 tpbwgs = 0.005 tcjswg = 0.001
xnis = 3 xtid = 3
dmci = 0e-006 dmcg = 0e-006 dmdg = 0e-006 dmcgt = 0e-007
dw = 0.0e-008 xgw = 0e-007 xgl = 0e-008
grh = 0.4 gbmin = 1e-010 rbpb = 5 rbpd = 15
rbbp = 15 rbdb = 15 rbsb = 15 ngcon = 1

// Library name: cad217
// Cell name: fet45
// View name: schematic
PORT1 (net023 0) port r=50 num=2 dc=800.0m type=sine
PORT0 (net015 0) port r=50 num=1 dc=730.431m type=sine
L0 (net6 net023) inductor l=100n
V0 (net6 0) vsource dc=1 type=dc
M3 (net023 net015 0 0) nmos w=1u l=65.000n as=1u*.2u ad=1u*.2u ps=1.4u \
 pd=1.4u nrd=.2 nrs=.2 m=2
M2 (net023 net015 0 0) nmos w=1u l=65.000n as=1u*.2u ad=1u*.2u ps=1u pd=1u \
 nrd=.2 nrs=.2 m=48
simulatorOptions options reltol=1e-3 vabstol=1e-6 iabstol=1e-12 temp=27 \
 tnom=27 scalem=1.0 scale=1.0 gmin=1e-12 rforce=1 maxnotes=5 maxwarns=5 \
 digits=5 cols=80 pivrel=1e-3 ckptclock=1800 \
 sensfile="../psf/sens.output"
dcOp dc write="spectre.dc" maxiters=150 maxsteps=10000 annotate=status
dcOpInfo info what=oppoint where=rawfile
dc dc dev=PORT0 param=dc start=0 stop=.9 lin=100 oppoint=rawfile \
 maxiters=150 maxsteps=10000 annotate=status
sp sp ports=[PORT0 PORT1] start=10G stop=5000G donoise=yes oprobe=PORT1 \
 iprobe=PORT0 annotate=status
modelParameter info what=models where=rawfile
element info what=inst where=rawfile
outputParameter info what=output where=rawfile
saveOptions options save=allpub
Current Gain

Note: k-factor > 1 until "kink"

NF for 50 ohm source

NF (minimum)