EECS 221A LECTURE 7

Goals of this lecture:

- Proof of existence and uniqueness of solutions to
 \[\dot{x} = f(x, t), \quad x(t_0) = x_0. \]

- Piecewise continuity
- Lipschitz continuity
- Cauchy sequence
- Banach space
- Bellman-Grönwall Lemma
- Examples

Refs:

Callier & Desoer,
Appendix B,
GB.1.
Differential Equations

\[\dot{x} = f(x,t); \quad x(t_0) \in \mathbb{R}^n; \quad x(t_0) = x_0 \]
\[f(x,t): \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}^n \]

Under what conditions

(a) does a solution exist, i.e., meaning that \(x(t_0) = x_0 \) guarantees that \(x(t) \) is defined for all \(t \geq t_0 \) ?

(b) is the solution unique?

Def. \(f(x,t): \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}^n \) is piecewise continuous in \(t \) \(\forall x \) if \(f(x,\cdot): \mathbb{R}_+ \to \mathbb{R}^n \) is continuous except at points of discontinuity, and there can only be finitely many points of discontinuity in any compact interval.

Def. \(f(x,t): \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}^n \) is Lipschitz continuous in \(x \) \(\forall t \) if there exists a piecewise continuous function \(k(\cdot): \mathbb{R}_+ \to \mathbb{R}_+ \) such that

\[\| f(x,t) - f(y,t) \| \leq k(t) \| x - y \| \]

This inequality is called the Lipschitz condition.

\(\forall x, y \in \mathbb{R}^n. \quad \forall t \in \mathbb{R}_+ \)
Fundamental Theorem of Differential Equations

Consider \(\dot{x} = f(x,t) \), \(x(t_0) = x_0 \), with \(f(x,t) \) piecewise continuous in \(t \) and lipschitz continuous in \(x \). Then there exists a unique function of time \(\phi(t) : \mathbb{R}_+ \to \mathbb{R}^n \) which is \(C^1 \) almost everywhere satisfying:

\[
\phi(t_0) = x_0
\]

\[
\dot{\phi}(t) = f(\phi(t), t) \quad \forall t \in [t_0, t] \quad D
\]

where \(D \) is the set of discontinuity points for \(f \) as a function of \(t \).

Using this, we will be able to generate mathematical models of input-output systems.

Consider, for example,

\[
\dot{x} = f(x, u, t), \quad f : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}_+ \to \mathbb{R}^n
\]

\[
y = h(x, u, t), \quad h : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}_+ \to \mathbb{R}^m
\]

If \(f \) is lipschitz continuous in \(x \), continuous in \(u \), and piecewise continuous in \(t \), and if \(u(\cdot) \) is piecewise continuous in \(t \), we are guaranteed that given \(x(t_0) = x_0 \) \(\exists ! x(t) \in \mathbb{R}^n \) satisfying the differential equation. With this, \(\exists ! y(\cdot) \in \mathbb{R}^m \) called the output of the system.
Note: if the Lipschitz condition does not hold, it may be that the solution cannot be continued beyond a certain time:

Example: consider

\[\xi(t) = \xi(t)^2, \quad \xi(0) = \frac{1}{c}, \quad c \neq 0 \]

where \(\xi(t) : \mathbb{R}^+ \rightarrow \mathbb{R} \).

This differential equation has the solution \(\xi(t) = \frac{1}{c-t} \) on \(t \in (-\infty, c) \).

When \(t \rightarrow c \), \(||\xi(t)|| \rightarrow \infty \)

"finite escape time at \(c \)."

Proof (of the Fundamental Theorem)

(1) Construct a sequence of continuous functions

\[x_{m+1}(t) := x_0 + \int_{t_0}^{t} f(x_m(r), r) \, dr \]

where \(x_0(t_0) = x_0 \) and \(m = 0, 1, 2, \ldots \)

The idea is to show that the sequence of continuous functions

\[\{x_m(\cdot)\}_{m=0}^{\infty} \]

converges to

(1) a continuous function \(\phi(\cdot) : \mathbb{R}^+ \rightarrow \mathbb{R}^n \)

(2) which is a solution of \(\dot{x} = f(x, t) \)

\[x(t_0) = x_0 \]

"construction of a solution by iteration"
To show (1), we show that $\xi x_m(\cdot)_{t_0} \to _t \infty$ is a Cauchy sequence in a Banach space $(C([t_1, t_2], \mathbb{R}^n), \mathbb{R}, \| \cdot \|_\infty)$, where $t_0 \in [t_1, t_2]$:

$$\| x_{m+1}(t) - x_m(t) \| = \| \int_t^{t_0} \| f(x_m(\tau), \tau) - f(x_{m-1}(\tau), \tau) \| d\tau \|$$

$$\leq \int_t^{t_0} \| f(x_m(\tau), \tau) - f(x_{m-1}(\tau), \tau) \| d\tau$$

$$\leq \int_t^{t_0} k(\tau) \| x_m(\tau) - x_{m-1}(\tau) \| d\tau$$

Letting $\bar{K} = \sup_{[t_1, t_2]} K(t)$, then for $m = 1, 2, \ldots, \forall t \in [t_1, t_2]$,

$$\| x_{m+1}(t) - x_m(t) \| \leq \bar{K} \int_t^{t_0} \| x_m(\tau) - x_{m-1}(\tau) \| d\tau$$

Now, we know by the definition of $\xi x_m(\cdot)_{t_0} \to _t \infty$ that

$$x_1(t) := x_0 + \int_t^{t_0} f(x_0, \tau) d\tau , \quad t \in [t_1, t_2]$$

$$\therefore \| x_1(t) - x_0 \| \leq \int_t^{t_0} \| f(x_0, \tau) \| d\tau \leq \int_t^{t_1} \| f(x_0, \tau) \| d\tau =: M$$

Since x_0 is specified, M is known.

$$\therefore \| x_2(t) - x_1(t) \| \leq M \bar{K} |t - t_0|$$
and \[\| x_3(t) - x_2(t) \| \leq M \frac{K^2 H - t_0}{2!} \]

\[\| x_{m+1}(t) - x_m(t) \| \leq M \frac{(K(t-t_0))^m}{m!} \]

now recalling that \[\| f(\cdot) \|_\infty = \max_{t \in [t_1, t_2]} \| f(t) \| \]
and defining \[T = t_2 - t_1 \]
\[\| x_{m+1}(\cdot) - x_m(\cdot) \|_\infty \leq M \frac{(KT)^m}{m!}, m = 0, 1, 2 \ldots \]

To see that \(\{ x_m(\cdot) \}_{n=0}^\infty \) is a Cauchy sequence in \((C([t_1, t_2], \mathbb{R}^n), \mathbb{R}, \| \cdot \|_\infty) \):

\[\| x_{m+p}(\cdot) - x_m(\cdot) \|_\infty = \| \sum_{k=0}^{p-1} (x_{m+k+1}(\cdot) - x_{m+k}(\cdot)) \|_\infty \]
\[\leq \sum_{k=0}^{p-1} \| x_{m+k+1}(\cdot) - x_{m+k}(\cdot) \|_\infty \]
\[\leq M \sum_{k=0}^{p-1} \frac{(KT)^{m+k}}{(m+k)!} \]
\[\leq M \frac{(KT)^m}{m!} \sum_{k=0}^{p-1} \frac{(KT)^k}{K!} \]

\[\text{(since } (m+k)! \geq m! K!) \]
\[\leq M \frac{(KT)^m}{m!} e^{KT} \]

\[\text{(since } e^{KT} = \sum_{k=0}^{\infty} \frac{(KT)^k}{K!} \)]

\[\therefore \{ x_m(\cdot) \}_{n=0}^\infty \text{ is Cauchy} \]
To show (2) \(\varphi(\cdot) \) is a solution of the d.e.:

\[
x_{m+1}(t) = x_0 + \int_{t_0}^{t} f(x_m(r), r) \, dr
\]

as \(m \to \infty \), \(x_m(\cdot) \to \varphi(\cdot) \) (on \([t, t_{2}] \))

we've just proved \(\Phi_\infty \)

\[
\therefore \text{need to show} \quad \int_{t_0}^{t} f(x_m(r), r) \, dr \to \int_{t_0}^{t} f(\varphi(r), r) \, dr
\]

as \(m \to \infty \).

Indeed,

\[
\begin{align*}
\| \int_{t_0}^{t} (f(x_m(r), r) - f(\varphi(r), r)) \, dr \| &
\leq \int_{t_0}^{t} k(r) \| x_m(r) - \varphi(r) \| \, dr \quad \text{by Lipschitz} \\
&
\leq K \| x_m(\cdot) - \varphi(\cdot) \|_\infty \cdot T \\
&
\leq K M e^{|ET|} \left(\frac{|ET|^m}{m!} \right) \cdot T \quad \text{(by letting} \ p \to \infty \ \text{in (**))}
\end{align*}
\]

\[
\therefore \varphi(t) = x_0 + \int_{t_0}^{t} f(\varphi(r), r) \, dr \quad \forall t \in [t_1, t_2]
\]

\[
\therefore \dot{\varphi}(t) = f(\varphi(t), t) \quad \forall t \in [t, t_2], t \notin D
\]

Since \([t, t_2] \) is arbitrary (containing \(t_0 \)) then we can conclude that the proposed iterative scheme converges to a soln \(\varphi \) on \(\mathbb{R}_+ \).
We have constructed a solution on \mathbb{R}_+. Conceivably, a different construction might lead to another solution. Thus we have to verify that \emptyset is the unique solution:

(Uniqueness).

To prove uniqueness, we will need the Bellman–Gronwall lemma.

Let $u(\cdot)$, $k(\cdot)$ be real-valued, piecewise continuous functions on \mathbb{R}_+; and assume $u(\cdot)$, $k(\cdot) > 0$ on \mathbb{R}_+. Assume $c_i > 0$, $t_0 \in \mathbb{R}_+$.

Then, if

$$u(t) \leq c_i + \int_{t_0}^{t} k(\tau) u(\tau) d\tau \quad (***)$$

Then

$$u(t) \leq c_i e^{\int_{t_0}^{t} k(\tau) d\tau}$$

Proof: WLOG assume $t > t_0$.

Let $U(t) = c_i + \int_{t_0}^{t} k(\tau) u(\tau) d\tau$.

Thus $u(t) \leq U(t)$ (***)

Multiply both sides of (***) by the non-negative function $k(t) e^{-\int_{t_0}^{t} k(\tau) d\tau}$.

resulting in:

$$\frac{d}{dt} \left\{ U(t) e^{-\int_{t_0}^{t} k(\tau) d\tau} \right\} \leq 0$$

and thus $u(t) \leq U(t) \leq c_i e^{-\int_{t_0}^{t} k(\tau) d\tau}$

Finally, using Bellman–Gronwall to show 9. uniqueness:
$$\dot{x} = f(x(t), t), \quad x(t_0) = x_0$$

f is:
- piecewise cont's in t
- Lipschitz cont's in x

We have shown there exists a solution $\phi(t)$ to the above; suppose there are two solutions $\phi \neq \psi$ satisfying the above:

$$\phi(t) = f(\phi(t), t), \quad \phi(t_0) = x_0$$
$$\psi(t) = f(\psi(t), t), \quad \psi(t_0) = x_0$$

$$\therefore \phi(t) - \psi(t) = \int_{t_0}^{t} (f(\phi(r), r) - f(\psi(r), r)) \, dr$$

$$\forall t \in \mathbb{R}^+$$

$$\therefore ||\phi(t) - \psi(t)|| \leq K \int_{t_0}^{t} ||\phi(r) - \psi(r)|| \, dr \quad \forall t \in [t_1, t_2]$$

From Bellman–Gronwall:

if $||\phi(t) - \psi(t)|| \leq C_1 + K \int_{t_0}^{t} ||\phi(r) - \psi(r)|| \, dr$

Then $||\phi(t) - \psi(t)|| \leq C_1 e^{K(t-t_0)}$

but here, $C_1 = 0$, thus $||\phi(t) - \psi(t)|| = 0$

$\Rightarrow \phi(t) = \psi(t)$
Example:

\[
\begin{align*}
\dot{x}(t) &= A(t)x(t) + B(t)u(t) \\
x(t_0) &= x_0
\end{align*}
\]

Show the solution is unique.

Solution: Assume \(\phi(t), \gamma(t) \) are two solutions.

\[
\therefore \phi(t_0) = \gamma(t_0) = x_0
\]

\[
\begin{align*}
\phi(t) &= A(t)\phi(t) + B(t)u(t) \\
\gamma(t) &= A(t)\gamma(t) + B(t)u(t)
\end{align*}
\]

\[
\therefore \phi(t) - \gamma(t) = \int_{t_0}^{t} (A(t)\phi(t) - A(t)\gamma(t)) \, dt
\]

\[
\therefore \| \phi(t) - \gamma(t) \| \leq \| A(t) \|_{\infty, [t_0, t]} \int_{t_0}^{t} \| \phi(t) - \gamma(t) \| \, dt
\]

\[
\therefore \text{by Bellman-Gronwall,}
\]

\[
\| \phi(t) - \gamma(t) \| \leq C_1 + \| A(t) \|_{\infty, [t_0, t]} \int_{t_0}^{t} \| \phi(t) - \gamma(t) \| \, dt
\]

\[
\Rightarrow \| \phi(t) - \gamma(t) \| \leq C_1 e^{\| A(t) \|_{\infty, [t_0, t]} (t-t_0)}
\]

This is true \(\forall C_1 > 0 \), so set \(C_1 = 0 \) . . .
Example Reverse-time differential equation.

Consider \(x = f(x, t) \), \(x(t_0) = x_0 \).

Suppose \(f(x, t) \) is such that the solution exists and is unique for \(t > t_0 \).

Now consider \(\tau < t_0 \), \(\tau = -(t - t_0) \).

We want \(z(\tau) = x(t) \) if \(t < t_0 \).

\[
\frac{d}{d\tau} z(\tau) = -\frac{d}{dt} x(t) = -f(x(t), t) = -f(z(\tau), t_0 - \tau) =: f(z(\tau), \tau)
\]

\(f \) lipschitz \(\Rightarrow \) \(f \) lipschitz. Why?

\[
\therefore \frac{d}{d\tau} z(\tau) = f(z, \tau) \quad z(0) = x_0
\]

\(\therefore \) in the reverse time d.e., solution exists and is unique.

Exercise: \(\dot{x} = f(x) \), \(x(t_0) = x_0 \), lipschitz \(\Rightarrow \) soln exists and is unique.

This can't happen: \(x \longrightarrow x_0 \)

Can this? : \(x \longrightarrow x_0 \), \(x_0 \longrightarrow x_{02} \)