1 Polynomial Functions of a Matrix (Cayley-Hamilton)

Theorem 1 (Cayley-Hamilton). Consider a matrix $A \in \mathbb{C}^{n \times n}$ with characteristic polynomial $\hat{\chi}_A(s) \equiv \det(sI - A) = s^n + d_1 s^{n-1} + \cdots + d_n$, the characteristic polynomial of A. Then

$$\hat{\chi}_A(A) = A^n + d_1 A^{n-1} + \cdots + d_n I = 0 \quad \text{(characteristic equation)}$$

That is, any square matrix A will satisfy its own characteristic equation.

Proposition 2. Every polynomial function f of A can be written as a function of $I, A, A^2, \cdots, A^{n-1}$.

Proof. We can divide the polynomial function f in s by the characteristic polynomial $\hat{\chi}_A(s)$ to obtain

$$f(s) = \hat{\chi}_A(s)q(s) + r(s),$$

where the order of the residue polynomial r is no higher than $n-1$. Hence $f(A) = \hat{\chi}_A(A)q(A) + r(A) = r(A)$, which implies that $f(A)$ can be written as a function of $I, A, A^2, \cdots, A^{n-1}$.

Problem 1. Recall the following problem from homework 1: Let

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$

Is the set $\{I, A, A^2\}$ linearly dependent or independent in $\mathbb{R}^{2 \times 2}$?

Problem 2. Consider the matrix

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$$

Using Proposition 2, compute $f_1(A) = A^3$.

2 Diagonalization

Definition 3. Let $A \in \mathbb{C}^{n \times n}$. A vector $v_i \in \mathbb{C}^n$, $v_i \neq 0$ is called an eigenvector of A if $Av_i = \lambda_i v_i$ for some $\lambda_i \in \mathbb{C}$, the eigenvalue corresponding to v_i.

Definition 4. Suppose v_1, \ldots, v_n is a linearly independent set of eigenvectors of $A \in \mathbb{R}^{n \times n}$. Then we can write $Av_i = \lambda_i v_i$, $i = 1, \ldots, n$. This can also be written as:

$$A [v_1 \cdots v_n] = [v_1 \cdots v_n] \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_r \end{bmatrix}$$

Define $T^{-1} = [v_1 \cdots v_n]$ and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$. Then,

$$AT^{-1} = T^{-1} \Lambda$$

$$\Lambda = TAT^{-1}$$

Steps to diagonalize a matrix:

1. Compute the eigenvalues of the matrix; they are given by solutions of the characteristic polynomial.
2. Compute the (right) eigenvectors corresponding to each eigenvalue. Stacking these eigenvectors gives matrix T^{-1}. The diagonalization is now given by $T^{-1} \Lambda T$.

Problem 3. In Problem 2, compute $f_2(A) = 2A^4 - 3A^3 - 3A^2 + 4I$.

Problem 4. In Problem 2, use Cayley-Hamilton to find A^{-1}.

Consider. Not all matrices are diagonalizable.

\[A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \]

Consider. If \(A \) is diagonalizable, does that mean it must have distinct eigenvalues?

Problem 5. Prove that Cayley-Hamilton holds for diagonalizable matrices

Problem 6. Let \(A \in \mathbb{R}^{n \times n} \) be diagonalizable. Using the dyadic expansion discussed in class (see Lecture notes 12), determine \(e^{At} \).
Problem 7. Consider $\dot{x} = Ax$ with $x_0 = v_i$, where $A \in \mathbb{R}^{2\times2}$ and v_i is its eigenvector. Assume that all eigenvalues of A are real. Find an expression for $x(t)$ in terms of v_i, t. Give a geometric interpretation of the trajectory of $x(t)$.

Problem 8. Let’s generalize the previous problem. Consider the system $\dot{x} = Ax$ with $x_0 \in \mathbb{R}^n$. Suppose that A has n linearly independent eigenvectors v_1, \ldots, v_n with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$. Find an expression for $x(t)$ in terms of the eigenvalues and eigenvectors of A.
Problem 9. This is a problem from Professor Ron Fearing on the Spring’14 prelim.

Given: \(A = \begin{bmatrix} -3 & 1 \\ 0 & -2 \end{bmatrix} \)

1. Find the characteristic polynomial for \(A \)

2. Express \(A^4 \) in terms of the lowest order polynomial in \(A \)

3. Find \(e^{At} \) by Cayley-Hamilton; that is show that \(e^{At} = \alpha_0(t)I + \alpha_1(t)A \)