1 Singular Value Decomposition

Definition 1. A matrix \(M \in \mathbb{R}^{n \times n} \) is called orthogonal if all rows and columns of the matrix are mutually orthogonal. Moreover, if all rows and columns have a unit norm, the matrix is called orthonormal. So for an orthonormal matrix, we have \(M^T M = M M^T = I \), where \(I \) is an identity matrix of size \(n \times n \).

Theorem 2. Any \(m \times n \) matrix can be factored into \(A = U \Sigma V^\top \), where \(U \) is an \(m \times m \) orthogonal matrix, \(V \) is an \(n \times n \) orthogonal matrix, and \(\Sigma \) has the form

\[
\Sigma = \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \text{where} \quad \Sigma_1 = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_r \end{bmatrix}
\]

where \(\text{rk} A = r \) and \(\sigma_1, \ldots, \sigma_r \) are the singular values of \(A \).

To do the proof/construction of the SVD, we need the following result:

Lemma 3. The columns of \(U \) are orthonormal eigenvectors of \(AA^\top \), the columns of \(V \) are orthonormal eigenvectors of \(A^\top A \) and \(\sigma_i^2 \)'s are the eigenvalues of \(AA^\top \) (or \(A^\top A \)).

Consider. Why are the columns of \(U \) are orthonormal eigenvectors of \(AA^\top \)? How about the columns of \(V \) being orthonormal eigenvectors of \(A^\top A \)?
Problem 1. Find the SVD of

\[A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix} \]
Consider. \textit{(Geometric Interpretation of SVD.)} Consider the matrix
\[
A = \begin{bmatrix} 3 & 7 \\ 5 & 2 \end{bmatrix}
\]
with SVD
\[
U = \begin{bmatrix} -0.8507 & -0.5257 \\ -0.5257 & 0.8507 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 8.7134 & 0 \\ 0 & 3.3282 \end{bmatrix}, \quad V = \begin{bmatrix} -0.5946 & 0.8041 \\ -0.8041 & -0.5946 \end{bmatrix}
\]

How can we geometrically interpret the linear map A through its SVD? Consider the unit circle and let’s see how the matrix can transform it.

(a) Unit circle and vectors.
(b) Unit circle after applying A.

Figure 1: Visual representation of linear map A acting on unit circle.

Let’s go step-by-step through how SVD decomposes this process into three transformations:

(a) Unit circle.
(b) V rotates.
(c) Sigma scales.
(d) U rotates again.

Figure 2: Visualization of SVD.
Problem 2. Matrix 2-norm. Prove that

\[\|A\|_2 = \max_{\|x\|_2 = 1} \|Ax\|_2 = \sigma_1 \]

Problem 3. Find the SVD of

\[A = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \]