Review of Sum of Squares (SOS) Polynomials

Checking whether a polynomial is SOS: A polynomial \(p \) with degree \(\leq 2d \) is a sum of squares if and only if there exists \(Q = Q^T \geq 0 \) s.t.

\[
p(x) = z(x)^T Q z(x)
\]

(1)

where \(z(x) \) is the vector of all monomials of degree \(\leq d \):

\[
z(x) \triangleq [1, x_1, x_2, \ldots, x_n, x_1^2, x_1 x_2, \ldots, x_n^d]^T.
\]

Find a particular solution \(Q_0 \) such that

\[
p(x) = z(x)^T Q_0 z(x),
\]

and find a basis of symmetric matrices \(N_j, j = 1, 2, \ldots, K \), such that

\[
z(x)^T N_j z(x) = 0 \quad \text{for all } x.
\]

(2)

Then \(p \) is SOS if and only if there exist reals \(\lambda_1, \ldots, \lambda_K \) such that

\[
Q = Q_0 + \sum_{j=1}^{K} \lambda_j N_j \geq 0.
\]

(3)

This is a linear matrix inequality (LMI) and can be solved numerically with standard semidefinite program (SDP) solvers.

Synthesizing SOS Polynomials: Given \(p_i, i = 0, 1, \ldots, m \), each with degree \(\leq 2d \), find reals \(a_1, \ldots, a_m \) s.t. \(p_0 + a_1 p_1 + \cdots + a_m p_m \) is SOS.

Find a particular \(Q_i \) satisfying \(p_i = z^T Q_i z \) for each \(i = 0, 1, \ldots, m \).

Then search for \(a_1, \ldots, a_m \) and \(\lambda_1, \ldots, \lambda_K \) satisfying the LMI

\[
Q_0 + \sum_{i=1}^{m} a_i Q_i + \sum_{j=1}^{K} \lambda_j N_j \geq 0.
\]

(4)

Applications

Searching for a Lyapunov Function

Given \(\dot{x} = f(x), f(0) = 0 \), where \(f \) is a vector of polynomials, search for a Lyapunov function of the form

\[
V(x) = p_0(x) + a_1 p_1(x) + \cdots + a_m p_m(x)
\]

(5)
where \(p_i, i = 0, 1, \cdots, m \) are basis polynomials selected ahead of time, and \(a_i, i = 1, \cdots, m \) are weights to be determined.

To ensure \(V \) is positive definite, pick a positive definite polynomial \(\ell \) (e.g., \(\ell(x) = \epsilon x^T x \) for some small \(\epsilon \)) and impose the constraint:

\[
V(x) - \ell(x) \text{ is SOS.} \quad (6)
\]

To ensure \(\nabla V(x)^T f(x) \) is negative semidef., impose the constraint:

\[
-\nabla V(x)^T f(x) \text{ is SOS.} \quad (7)
\]

Constraints (6) and (7) can be brought to the LMI form (4) and feasible \(a_i, i = 1, \cdots, m \) can be determined numerically (if they exist).

Overapproximating Reachable Sets

Recall from Lecture 16 that

\[
R_T = \left\{ x(T) \mid \dot{x} = f(x, u), \ x(0) = 0, \int_0^T u^T(t)u(t)dt \leq 1 \right\} \quad (8)
\]

defines the reachable set from \(x(0) = 0 \) under unit energy inputs and, if we can find a positive definite \(V \) such that

\[
\nabla V(x)^T f(x, u) \leq u^T u, \quad (9)
\]

then we can overapproximate \(R_T \) by:

\[
R_T \subset \{ x : V(x) \leq 1 \}.
\]

This follows because, from (9),

\[
\frac{d}{dt} V(x(t)) \leq u^T u \Rightarrow V(x(T)) - V(x(0)) \leq \int_0^T u^T(t)u(t)dt \leq 1 \Rightarrow V(x(T)) \leq 1.
\]

If \(f(x, u) \) is a vector of polynomials in \(x \) and \(u \), we can search for a polynomial \(V \) of the form (5), and encode (9) with the constraint:

\[
-\nabla V(x)^T f(x, u) + u^T u \text{ is SOS in } x \text{ and } u. \quad (10)
\]

This can then be combined with (6) and brought to the LMI form (4).

Certifying Safety

If unsafe set \(U \) does not intersect the overapproximation above, then it can’t intersect the actual reachable set. Thus, we can certify safety by proving the implication:

\[
x \in U \Rightarrow V(x) \geq 1 + \epsilon \quad (11)
\]
for some $\varepsilon > 0$.

Suppose the unsafe set can be expressed as

$$U = \{x : q_i(x) \geq 0, \ i = 1, \cdots, p\}$$

where q_i are polynomials. Then we can encode (11) with the constraints:

$$V(x) - (1 + \varepsilon) - \sum_{i=1}^{p} s_i(x)q_i(x) \text{ is SOS} \quad (12)$$

$$s_i(x), \ i = 1, \cdots, p \text{ are SOS.} \quad (13)$$

We can parameterize the search space for s_i as we did for V in (5), and combine (6), (10), (12)-(13) into a LMI.

Above we implicitly used a generalization of the S-procedure from Lecture 16. Specifically, to prove that $q_0(x) \geq 0$ whenever $q_i(x) \geq 0, \ i = 1, 2, \ldots, p$ we look for nonnegative functions s_1, s_2, \ldots, s_p (rather than constants as in Lecture 16) such that

$$q_0(x) - \sum_{i=1}^{p} s_i(x)q_i(x) \geq 0.$$

Underapproximating the Region of Attraction

Given system $\dot{x} = f(x)$ with asymptotically stable equilibrium at the origin $x = 0$, the region of attraction, denoted R_A, is the set of initial conditions from which the trajectories converge to the origin.

Recall from Lecture 10 that, if V is positive definite and

$$\nabla V(x)^T f(x) < 0 \quad \text{whenever } x \neq 0 \text{ and } V(x) \leq \gamma, \quad (14)$$

then $\Omega_\gamma = \{x : V(x) \leq \gamma\} \subset R_A$.

Let ℓ be a positive definite polynomial. If there exists a SOS polynomial s such that

$$-[\ell(x) + \nabla V(x)^T f(x)] - s(x)[\gamma - V(x)] \text{ is SOS,} \quad (15)$$

then $V(x) \leq \gamma$ implies $\nabla V(x)^T f(x) \leq -\ell(x)$ as stipulated in (14).

To obtain a LMI from (15), one option is to fix the Lyapunov function V and to parameterize the search space for s. We can further maximize γ subject to (15) by incrementing γ until the resulting LMI is infeasible.

Alternatively s can be fixed and V parameterized. If we parameterize both s and V, however, (15) is no longer affine in the parameters because the term $s(x)V(x)$ contains the products of these parameters.
Below is a procedure that alternates between first fixing V, varying s, and next fixing s, varying V. When a new V is obtained, however, the shape of the level set changes and it may be ambiguous whether the new one is bigger. To remove this ambiguity we define a "shape function" p and use its level sets to judge the size of the region of attraction estimate.

Step 1: Let $V_0(x)$ be an initial choice for a Lyapunov function, e.g., a quadratic function for the linearized model at the origin. Find $\gamma^* := \max \gamma \text{ s.t. } \nabla V_0(x)^T f(x) < 0 \text{ whenever } x \neq 0 \text{ and } V_0(x) \leq \gamma$.

To satisfy the constraint look for a SOS multiplier $s_1(x)$ that satisfies

$$-[\ell(x) + \nabla V_0(x)^T f(x)] - s_1(x)[\gamma - V_0(x)]$$

is SOS

where ℓ is positive definite, e.g., $\ell(x) := \epsilon (x_1^2 + x_2^2)$ for some $\epsilon > 0$.

Step 2: Let $p(x)$ be some fixed, positive definite convex polynomial (e.g., $p(x) = x_1^2 + x_2^2$), and let $V_0(x)$ and γ^* be as in Step 1. Find $\beta^* := \max \beta \text{ s.t. } V_0(x) \leq \gamma^* \text{ whenever } p(x) \leq \beta$.

To satisfy the constraint look for a SOS multiplier $s_2(x)$ such that

$$[\gamma^* - V_0(x)] - s_2(x)[\beta - p(x)]$$

is SOS.

This means that $\{x : p(x) \leq \beta\}$ is contained in $\{x : V_0(x) \leq \gamma^*\}$.

Step 3: Given $\gamma^*, s_1(x)$ from Step 1 and $p(x), s_2(x)$ from Step 2, search for $V(x)$ to solve:

$$\max_{\beta > 0, 4\text{th-order } V(x)} \beta$$

subject to

- $V(x) - \ell(x)$ is SOS
- $-[\ell(x) + \nabla V(x)^T f(x)] - s_1(x)[\gamma^* - V(x)]$ is SOS
- $[\gamma^* - V(x)] - s_2(x)[\beta - p(x)]$ is SOS.

The first constraint ensures V is positive definite. The second implies that the level set $\{x : V(x) \leq \gamma^*\}$ is invariant, hence a valid approximation for the region of attraction. The third constraint and the maximization of β ensure that V is selected such that the level set $\{x : V(x) \leq \gamma^*\}$ is as large as possible, as measured by function p.

To proceed, replace $V_0(x)$ in Step 1 with the function $V(x)$ from Step 3, and repeat the steps above for several iterations, until the change in β^* in Step 2 is sufficiently small. The final approximation of the ROA is the set where $V(x) \leq \gamma^*$.