Feedback Linearization (continued)

Nonlinear Changes of Variables

$T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is called a *diffeomorphism* if its inverse T^{-1} exists, and both T and T^{-1} are continuously differentiable (C^1).

Examples:

1. $\xi =Tx$ is a diffeomorphism if T is a nonsingular matrix
2. $\xi = \sin x$ is a local diffeomorphism around $x = 0$, but not global

![Diffeomorphism Example](image)

3. $\xi = x^3$ is not a diffeomorphism because $T^{-1}(\cdot)$ is not C^1 at $\xi = 0$

![Non-Diffeomorphism Example](image)

How to check if $\xi = T(x)$ is a local diffeomorphism?

Implicit Function Theorem

Suppose $f : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^n$ is C^1 and there exists $x_0 \in \mathbb{R}^n, \xi_0 \in \mathbb{R}^m$ such that

$$f(x_0, \xi_0) = 0.$$

If $\frac{\partial f}{\partial x}(x_0, \xi_0)$ is nonsingular, then in a neighborhood of (x_0, ξ_0),

$$f(x, \xi) = 0$$

has a unique solution $x = g(\xi)$ where g is C^1 at $\xi = \xi_0$.

Corollary: Let $f(x, \xi) = T(x) - \xi$. If $\frac{\partial T}{\partial x}$ is nonsingular at x_0, then $T(\cdot)$ is a local diffeomorphism around x_0.
A "Normal Form" that Explicitly Displays the Zero Dynamics

Theorem: If $\dot{x} = f(x) + g(x)u, y = h(x)$ has a well-defined relative degree $r \leq n$, then there exist a diffeomorphism $T : x \rightarrow \begin{bmatrix} z \\ \zeta \end{bmatrix}$, $z \in \mathbb{R}^{n-r}, \zeta \in \mathbb{R}^r$, that transforms the system to the form:

\[
\begin{align*}
\dot{z} &= f_0(z, \zeta) \\
\dot{\zeta}_1 &= \zeta_2 \\
&\vdots \\
\dot{\zeta}_r &= b(z, \zeta) + a(z, \zeta)u, \quad y = \zeta_1.
\end{align*}
\]

(1)

In particular, $\dot{z} = f_0(z, 0)$ represents the zero dynamics. □

To obtain this form, let $\zeta = [h(x) \quad L_fh(x) \ldots \quad L_{f}^{r-1}h(x)]^T$, and find $n - r$ independent variables z such that \dot{z} does not contain u.

Note that the terms $b(z, \zeta)$ and $a(z, \zeta)$ correspond to $L_r f(x)$ and $L_g L_{r-1}f(x)$ in the original coordinates.

Example:

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= ax_3 + u \\
\dot{x}_3 &= \beta x_3 - u \\
y &= x_1.
\end{align*}
\]

Let $\zeta_1 = x_1, \zeta_2 = x_2$, and note that $z = x_2 + x_3$ is independent of ζ_1, ζ_2, and \dot{z} does not contain u. Thus, the normal form is:

\[
\begin{align*}
\dot{z} &= (a + \beta)x_3 = (a + \beta)z - (a + \beta)\zeta_2 \\
\dot{\zeta}_1 &= \zeta_2 \\
\dot{\zeta}_2 &= ax_3 + u = az - a\zeta_2 + u.
\end{align*}
\]

I/O Linearizing Controller in the new coordinates (1):

\[
\begin{align*}
u &= \frac{1}{a(z, \zeta)} \left(- b(z, \zeta) + v \right) \\
v &= -k_1\zeta_1 \cdots - k_r\zeta_r
\end{align*}
\]

(2) (3)

where k_1, \ldots, k_r are such that all roots of $s^r + k_1 s^{r-1} + \cdots + k_2 s + k_1$ have negative real parts.

Theorem: If $z = 0$ is locally exponentially stable for the zero dynamics $\dot{z} = f_0(z, 0)$, then (2)–(3) locally exponentially stabilizes $x = 0$.

Proof: Closed-loop system:

\[
\begin{align*}
\dot{z} &= f_0(z, \zeta) \\
\dot{\zeta} &= A\zeta
\end{align*}
\]
where

\[
A = \begin{bmatrix}
0 & 1 & 0 & \ldots \\
0 & 0 & 1 & \ldots \\
& & & \\
-k_1 & -k_2 & -k_3 & \ldots & -k_r
\end{bmatrix}
\]

is Hurwitz. The Jacobian linearization at \((z, \zeta) = 0\) is:

\[
J = \begin{bmatrix}
\frac{\partial f_0}{\partial z}(0, 0) & \frac{\partial f_0}{\partial \zeta}(0, 0) \\
0 & A
\end{bmatrix}
\]

where \(\frac{\partial f_0}{\partial z}(0, 0)\) is Hurwitz since \(\dot{z} = f_0(z, 0)\) is exponentially stable by the proposition in Lecture 11, page 1. Since \(A\) is also Hurwitz, all eigenvalues of \(J\) have negative real parts \(\Rightarrow\) exponential stability.

Global asymptotic stability can be guaranteed with additional assumptions on the zero dynamics, such as ISS of \(\dot{z} = f_0(z, \zeta)\) with respect to the input \(\xi\):

\[
\dot{z} = f_0(z, \zeta) \quad \dot{\zeta} = A\zeta
\]

Example: \(\dot{z} = -z + z^2\zeta, \quad \dot{\zeta} = -k\zeta\)

\((z, \zeta) = 0\) is locally exponentially stable, but not globally: solutions escape in finite time for large \(z(0)\).

I/O Linearizing Controller for Tracking

For the output \(y(t)\) to track a reference signal\(^2\) \(y_d(t)\), replace (3) with:

\[
v = -k_1(\zeta_1 - y_d(t)) - k_2(\zeta_2 - \dot{y}_d(t)) - \cdots - k_r(\zeta_r - y_d^{(r-1)}(t)) + y_d^{(r)}(t)
\]

Let \(e_1 \triangleq \zeta_1 - y_d(t), e_2 \triangleq \zeta_2 - \dot{y}_d(t), \ldots, e_r \triangleq \zeta_r - y_d^{(r-1)}(t)\). Then:

\[
\begin{align*}
\dot{e}_1 &= e_2 \\
\dot{e}_2 &= e_3 \\
& \vdots \\
\dot{e}_r &= v - y_d^{(r)}(t) = -k_1e_1 - \cdots - k_re_r
\end{align*}
\]

Thus \(e(t) \to 0\), that is \(y(t) - y_d(t) \to 0\).

If \(y_d(t)\) and its derivatives are bounded, then \(\zeta(t)\) is bounded. If the zero dynamics \(\dot{z} = f_0(z, \zeta)\) is ISS with respect to \(\zeta\), then \(z(t)\) is also bounded. Thus, all internal signals are bounded.
Full-State Feedback Linearization

The system $\dot{x} = f(x) + g(x)u$, $x \in \mathbb{R}^n$, $u \in \mathbb{R}$, is (full state) feedback linearizable if a function $h(x)$ exists such that the relative degree from u to $y = h(x)$ is n.

Since $r = n$, the normal form (1) has no zero dynamics and

$$x \rightarrow \begin{bmatrix} \zeta_1 \\ \zeta_2 \\ \vdots \\ \zeta_n \end{bmatrix} = \begin{bmatrix} h(x) \\ L_fh(x) \\ \vdots \\ L^n_fh(x) \end{bmatrix}$$

is a diffeomorphism that transforms the system to the form:

$$\begin{align*}
\dot{\zeta}_1 &= \zeta_2 \\
\dot{\zeta}_2 &= \zeta_3 \\
&\vdots \\
\dot{\zeta}_n &= L^n_fh(x) + L_{g}L^{n-1}_f h(x)u.
\end{align*}$$

Then, (2)-(3) with $r = n$ is a feedback linearizing controller.

Closed-loop system in the new coordinates:

$$\dot{\xi} = A\xi \quad \text{where} \quad A = \begin{bmatrix} 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ & & \ddots & \vdots \\ -k_1 & -k_2 & -k_3 & \cdots & -k_r \end{bmatrix}.$$

Example:

$$\begin{align*}
\dot{x}_1 &= x_2 + 2x_1^2 \\
\dot{x}_2 &= x_3 + u \\
\dot{x}_3 &= x_1 - x_3
\end{align*}$$

The choice $y = x_3$ gives relative degree $r = n = 3$.

Let $\zeta_1 = x_3$, $\zeta_2 = x_3 = x_1 - x_3$, $\zeta_3 = \ddot{x}_3 = \dot{x}_1 - \dot{x}_3 = x_2 + 2x_1^2 - x_1 + x_3$.

$$\begin{align*}
\dot{\zeta}_1 &= \zeta_2 \\
\dot{\zeta}_2 &= \zeta_3 \\
\dot{\zeta}_3 &= (4x_1 - 1)(x_2 + 2x_1^2) + x_1 + u
\end{align*}$$

Feedback linearizing controller:

$$\begin{align*}
u &= -(4x_1 - 1)(x_2 + 2x_1^2) - x_1 - k_1\zeta_1 - k_2\zeta_2 - k_3\zeta_3 \\
&= -(4x_1 - 1)(x_2 + 2x_1^2) - x_1 - k_1x_3 - k_2(x_1 - x_3) \\
&\quad - k_3(x_2 + 2x_1^2 - x_1 + x_3).
\end{align*}$$