Case Study: A Vehicle Platoon

Consider a platoon where the velocity of each vehicle is governed by

\[\dot{v}_i = -v_i + v_i^0 + u_i \quad i = 1, \ldots, N \]

(1)

in which \(u_i \) is a coordination feedback to be designed and \(v_i^0 \) is the (constant) nominal velocity of vehicle \(i \) in the absence of such feedback. The position of vehicle \(i \) is then obtained from

\[\dot{x}_i = v_i. \]

We will design feedback laws that depend on relative positions with respect to a subset of other vehicles, typically nearest neighbors.

We introduce an undirected graph where the vertices represent the vehicles and an edge between vertices \(i \) and \(j \) means that vehicles \(i \) and \(j \) have access to the relative position measurement \(x_i - x_j \). Next we assign an orientation to each edge by selecting one end to be the head and the other to be the tail. Then the *incidence matrix*

\[D_{il} = \begin{cases}
1 & \text{if vertex } i \text{ is the head of edge } l \\
-1 & \text{if vertex } i \text{ is the tail of edge } l \\
0 & \text{otherwise}
\end{cases} \]

(2)

generates a vector of relative positions \(z_l \) for the edges \(l = 1, \ldots, L \) by

\[z = D^T x. \]

(3)

As an illustration, in Figure 1,

\[D = \begin{bmatrix}
1 & 0 \\
-1 & 1 \\
0 & -1
\end{bmatrix} \quad \text{and} \quad \begin{bmatrix} z_1 \\
z_2
\end{bmatrix} = D^T x = \begin{bmatrix} x_1 - x_2 \\
x_2 - x_3
\end{bmatrix}. \]

We propose the feedback law

\[u = -D \begin{bmatrix} h_1(z_1) \\
\vdots \\
h_L(z_L)
\end{bmatrix} \]

(4)
where each function \(h_l : \mathbb{R} \rightarrow \mathbb{R} \) is increasing and onto. This means that vehicle \(i \) applies the input
\[
u_i = - \sum_{l=1}^{L} D_{il} h_l(z_l)
\]which depends on locally available measurements because \(D_{il} \neq 0 \) when vertex \(i \) is the head or tail of edge \(l \). In the case of Figure 1,
\[
\begin{align*}
u_1 &= -h_1(z_1) & u_2 &= h_1(z_1) - h_2(z_2) & u_3 &= h_2(z_2)
\end{align*}
\]where we may interpret \(h_1(z_1) \) and \(h_2(z_2) \) as virtual spring forces between vehicles 1 and 2, and 2 and 3 respectively.

Note from (3) that
\[
\dot{z} = D^Tv \triangleq w
\]where we interpret \(w \) as an input and define the output
\[
y \triangleq \begin{bmatrix} h_1(z_1) \\ \vdots \\ h_L(z_L) \end{bmatrix}.
\]Then the closed-loop system is as in Figure 2 (left) where the feed-forward blocks \(u_i \mapsto v_i \) represent the velocity dynamics (1) and the feedback blocks \(w_l \mapsto y_l \) represent the \(l \)th subsystem of the relative position dynamics (6)-(7).

This block diagram is equivalent to the one in Figure 2 (right) which is of the standard form in Lecture 23 with the interconnection matrix
\[
M = \begin{bmatrix} 0 & -D \\ D^T & 0 \end{bmatrix}.
\]The skew symmetry of \(M \) will allow us to conclude stability from the passivity properties of the subsystems.
Determining the Equilibrium

At equilibrium the right hand side of (6) must vanish, that is

\[D^T v^* = 0. \] \hspace{1cm} (9)

By the definition (2) above, the null space of \(D^T \) includes the vector of ones: \(D^T \mathbb{1} = 0 \). In addition, if the graph is connected then the span of \(\mathbb{1} \) constitutes the entire null space: there is no solution to (9) other than \(v^* = \alpha \mathbb{1} \) where \(\alpha \) is a common platoon velocity.

Setting the right hand side of (1) to zero, we see that the equilibrium value of the inputs \(u_i \) must compensate for the variations in the nominal velocities \(v^*_i \) so that a common velocity \(\alpha \) can be maintained:

\[-\alpha + v^*_i + u_i = 0 \quad i = 1, \ldots, N. \] \hspace{1cm} (10)

Note that \(\sum_{i=1}^{N} u_i = \mathbb{1}^T u = 0 \), which follows from (4) and \(\mathbb{1}^T D = 0 \).

Thus, if we add the equation (10) for \(i = 1 \) to \(i = N \) we get

\[-N\alpha + \sum_{i=1}^{N} v^*_i = 0 \]

which shows that the common velocity \(\alpha \) must be the average \(\frac{1}{N} \sum_{i=1}^{N} v^*_i \).

Substituting this average for \(\alpha \) and (5) for \(u^*_i \) back in (10) we obtain the following equations for \(z^*_l \):

\[v^*_i - \frac{1}{N} \sum_{i=1}^{N} v^*_i = \sum_{l=1}^{L} D_{il} h_l(z^*_i) \quad i = 1, \ldots, N. \]

These equations are particularly transparent for a line graph as in Figure 1 where the head and tail of edge \(l \) are vertices \(l \) and \(l+1 \):

\[v^*_1 - \frac{1}{N} \sum_{i=1}^{N} v^*_i = h_1(z^*_1) \]
\[v^*_i - \frac{1}{N} \sum_{i=1}^{N} v^*_i = -h_{i-1}(z^*_{i-1}) + h_i(z^*_i) \quad i = 2, \ldots, N - 1 \]
\[v^*_N - \frac{1}{N} \sum_{i=1}^{N} v^*_i = -h_{N-1}(z^*_{N-1}). \]

Adding equations \(i = 1 \) to \(l \) we get a new equation that depends only on \(h_l(z^*_l) \). Then a solution \(z^*_l \) exists since \(h_l(\cdot) \) is onto, and is unique since \(h_l(\cdot) \) is increasing. A similar argument may be developed for other acyclic graphs.
Stability Analysis

To analyze the stability of the equilibrium characterized above, we define the shifted state variables

\[\tilde{v}_i \triangleq v_i - \alpha \quad \tilde{z}_l \triangleq z_l - z_l^* \]

so that, at equilibrium \(\tilde{v}_i = 0 \) and \(\tilde{z}_l = 0 \).

From (1) and (10),

\[\dot{\tilde{v}}_i = -v_i + v_i^0 + u_i = -\tilde{v}_i + \tilde{u}_i \quad (11) \]

which is output strictly passive with input \(\tilde{u}_i \triangleq u_i - u_i^* \) and output \(\tilde{v}_i \), since the storage function

\[V_i(\tilde{v}_i) = \frac{1}{2} \tilde{v}_i^2 \]

satisfies

\[\dot{V}_i = -\tilde{v}_i^2 + \tilde{v}_i \tilde{u}_i. \]

Likewise, from (6)-(7),

\[\dot{\tilde{z}}_l = w_l \quad (12) \]

which is passive with input \(w_l \) and output:

\[\tilde{y}_l \triangleq h_l(z_l) - h_l(z_l^*). \]

To see this, take the storage function

\[W_l(\tilde{z}_l) = \int_{z_l^*}^{z_l} [h_l(z_l^* + \sigma) - h_l(z_l^*)] d\sigma \]

which satisfies

\[\dot{W}_l = [h_l(z_l) - h_l(z_l^*)] w_l = \tilde{y}_l w_l. \]

It follows from the skew symmetry of the interconnection matrix \(M \) and the passivity of the subsystems (see Lecture 24) that the origin \(\tilde{v}_i = 0 \) and \(\tilde{z}_l = 0 \) is stable and a Lyapunov function is

\[\sum_{i=1}^{N} V_i(\tilde{v}_i) + \sum_{l=1}^{L} W_l(\tilde{z}_l). \]