GOALS OF THIS LECTURE:

- Poincaré–Bendixson Thm.
 mainly used as a quantitative tool to determine "where trajectories end up"

- Lotka–Volterra example

REFS: SASTRY §2.3, 2.2
 Khalil §2.6

Defn [Flow] The state of the system
\[\dot{x} = f(x) \] (NL)
at time \(t \) starting from \(x \) at time 0
is called the flow and is denoted by \(\Phi_t(x) \).

Defn [W-limit set] A point \(z \in \mathbb{R}^2 \) is said to
be an \(W \)-limit point of a trajectory \(\Phi_t(x) \) of
(NL) if there exists a sequence of times
\(t_n, n = 1 \ldots \infty \) such that \(t_n \to \infty \) as \(n \to \infty \)
for which \(\lim_{n \to \infty} \Phi_{t_n}(x) = z \). The set of all
limit points of \(\Phi_t(x) \) is called the \(W \)-limit set,
Poincaré-Bendixson Theorem

Consider the planar dynamical system:
\[\begin{align*}
\dot{x}_1 &= f_1 (x_1, x_2) \\
\dot{x}_2 &= f_2 (x_1, x_2)
\end{align*} \text{ (NL)}

Let \(M \) be a compact, positively invariant set for the flow \(\Phi_t (x) \). Let \(p \in M \). Then, if \(M \) contains no equilibrium points, \(\omega(p) \) is a closed orbit of (NL).

(More simply:) Every compact (non-empty) positively invariant set \(M \) contains an equilibrium point or a closed orbit.

Remark: if \(M \) contains equilibrium points, \(M \) may also contain a union of trajectories connecting these equilibria

\[\text{e.g.,} \]

Recall that this is not a closed orbit.
Remark 2: if γ is a closed orbit of NL, enclosing an open set U, then U contains an equilibrium point (check using index theory), and U may also contain a closed orbit.
Worked Example: Lotka-Volterra predator-prey model

\[
\begin{align*}
\dot{x} &= (a - by - \lambda x)x \\
\dot{y} &= (cx - d - \mu y)y
\end{align*}
\]

\(a, b, c, d, \lambda, \mu \geq 0\)

Equilibria:

\((0, 0) \)

\(\left(\frac{a}{\lambda}, 0 \right) \)

\((0, \frac{-b}{\mu}) \rightarrow \text{disallowed since } x \geq 0, \ y \geq 0 \)

\(e_3 = \left(\frac{bd + a\mu}{bc + \lambda\mu}, \frac{ac - d\lambda}{bc + \lambda\mu} \right) \rightarrow \text{disallowed for } ac < d\lambda \)

Jacobian:

\[
J = \begin{bmatrix}
 a - by - 2\lambda x & -bx \\
e\gamma & cx - d - 2\mu y
\end{bmatrix}
\]

at \((0, 0)\), \(J = \begin{bmatrix} a & 0 \\ 0 & -d \end{bmatrix} \rightarrow \text{saddle} \)

at \(\left(\frac{a}{\lambda}, 0 \right) \), \(J = \begin{bmatrix} -a & -\frac{ba}{\lambda} \\ 0 & \frac{ca - d}{\lambda} \end{bmatrix} \rightarrow \text{e-vals} \)

at \(e_3 \), big mess but do-able.
CASE 1: \(ac < dA \Rightarrow 2 \) equilibria
\((0,0) \quad (\frac{a}{A},0)\)

(see Figure)

Remarks: \(1) \) it is impossible for both prey \& predator populations to increase at once:
\ie we cannot have \(x > 0, y > 0 \)

2) The region \(\text{I} \cup \text{II} \) is invariant (verify). Also, it cannot contain any limit cycles (more generally, closed orbits) since \(y \leq 0 \) throughout \(\text{I} \cup \text{II} \).

Therefore, by Poincaré–Bendixson all trajectories starting in \(\text{I} \cup \text{II} \) will tend to \((0,0) \) or \((\frac{a}{A},0)\), the only equilibria.

3) Trajectories starting in \(\text{III} \) eventually enter \(\text{II} \) since \(x < 0, y > 0 \) in \(\text{III} \)

\[\vdots \]

\(2) \; 3) \) Show that all non-zero initial predator \& prey populations tend to \((\frac{a}{A},0)\).
CASE 1: \[a = 2, \ b = 0.5, \ c = 1, \ d = 2, \]
\[\lambda = 2, \ \mu = 2 \]
CASE 2: \(ac > dd \Rightarrow 3 \) equilibria \((0,0), \left(\frac{a}{d}, 0\right), z\)

where \(z = \left(\frac{bd + am}{bc + m}, \frac{ac - dd}{bc + m} \right) \)

(see Figure on next page)

\(z \) is a stable \{focus \}

node

\((0,0)\) is still a saddle.

\(\left(\frac{a}{d}, 0\right) \) is a saddle

The region \(D \) (rectangular region in the Figure) is invariant.

Thus it could contain closed orbits (by Poincaré-Bendixson) and they must surround \(z \) (by Index Theory).

Remarks

1) All initial conditions starting outside \(D \) eventually enter \(D \)

2) Trajectories inside \(D \) will either tend to a \underline{limit cycle} or \(z \)

(\(\text{or} \left(\frac{a}{d}, 0\right) \text{ or } (0,0) \text{ if they start at these points} \)
CASE 2

\[a = 2, \quad b = 0.5, \quad c = 1, \quad d = 2 \]
\[\lambda = 0.5, \quad \mu = 0.5 \]
Conclusions:

- Invariant sets are often easy to find in \(\mathbb{R}^2 \)
- Combining our tools:
 - equilibria/linearization
 - Bendixson
 - Poincaré-Bendixson \{ only work in \(\mathbb{R}^2 \) \}
 - Index Theory

We can quickly determine the behavior of the system without doing any simulations!