Problem 1. Consider the system
\[
\begin{align*}
\dot{x}_1 &= x_2 - x_3 \\
\dot{x}_2 &= -x_1 x_3 - x_2 + u \\
\dot{x}_3 &= -x_1 + u
\end{align*}
\]
with output \(y = h(x) \), a scalar function chosen by you. Design a feedback linearizing control law \(u(x, v) \) based on your choice of \(h \), and discuss the effect of different choices of \(h \).

Problem 2. Consider the system
\[
\begin{align*}
\dot{x}_1 &= -x_1 + x_2 - x_3 \\
\dot{x}_2 &= -x_1 x_3 - x_2 + u \\
\dot{x}_3 &= -x_1 + u
\end{align*}
\]
with output \(y = x_3 \). Design a feedback linearizing control law. What can you say about the stability of the overall system when this control law is used?

Problem 3: Linearization of a Translational Oscillator.

The dynamics of the translational oscillator with rotating actuator (TORA) are given below.

To get a little background and see a picture of the TORA, please refer to the paper: R. T. Bupp, D. S. Bernstein, and V. T. Coppola, “A Benchmark Problem for Nonlinear Control Design”, Int. J. of Robust and Nonlinear Control, 8, 307-310, 1998, available at the link:

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= \frac{-x_1 + \epsilon x_4 \sin x_3}{1 - \epsilon^2 \cos^2 x_3} + \frac{-\epsilon \cos x_3}{1 - \epsilon^2 \cos^2 x_3} u \\
\dot{x}_3 &= x_4 \\
\dot{x}_4 &= \frac{1}{1 - \epsilon^2 \cos^2 x_3} (\epsilon \cos x_3 (x_1 - \epsilon x_4^2 \sin x_3) + u)
\end{align*}
\]

where \(x_1 \) and \(x_2 \) are the displacement and the velocity of the platform, \(x_3 \) and \(x_4 \) are the angle (\(\theta \)) and the angular velocity of the rotor carrying the mass \(m \), and \(u \) is the control torque applied to the rotor. The parameter \(\epsilon < 1 \) depends on properties of the rotor, spring constant, as well as the masses \(m \) and \(M \).

This system is a simplified model of a dual-spin spacecraft and has been used to study the resonance capture phenomenon. It has also been studied to investigate the utility of a rotational proof-mass actuator for stabilizing translational motion.

With \(y = x_3 \) as the output, determine the relative degree and the zero dynamics. Give a physical interpretation of the zero dynamics.