Problem 1

Consider the nonlinear system

\[\dot{x} = Ax + g(t, x) \] \hspace{1cm} (1)

where \(A \in \mathbb{R}^{n \times n} \) is Hurwitz and we have \(x \in \mathbb{R}^n \).

1. First, consider the case where \(\|g(t, x)\|_2 \leq \gamma \|x\|_2 \) for each \(t \geq 0 \) and all \(x \in \mathbb{R}^n \). Show that the origin is globally exponentially stable for \(\gamma \) small enough.

2. Next, suppose there exists \(\delta > 0 \) such that \(\|g(t, x)\| < \delta \) for each \(t \geq 0 \) and \(x \in \mathbb{R}^n \). Note that the origin may no longer be an equilibrium point for the system. Nevertheless, show that \(x(t) \) converges to a ball containing the origin as \(t \to \infty \) and produce an estimate for the radius of this ball as a function of \(\delta \).