Fractal Compression

Founders: Manderbiothand Barnsley.

* Basic idea: fixed point transformation

X, 1s fixed point of function f if
J (Xo) = X()

 Example: Transformation ax +b
has a fixed point X, given by:

* To transmit X,, send a,b

Then iterate:

X0 = ax( 4 b

will converge regardless of initial
guess.



Image Compression

Think of Image I as array of numbers

 Find a function f such that

fa) =1

It # of bits to transmit f is smaller

than I, achieve Compression

* In practice, hard to come up with one

transformation f, for the whole image.

e Divide up the image into domain and

domain and Range blocks



Image Compression
e Main idea:

- Divide up image into M x M
“Range” blocks

- For each Range block find
another 2 M x 2 M
“Domain block” from
the same image such that for some

transformation f, we
get fx(Dg) = Ry
Dy = Domain block k
Ry = Range block k

* First publicly discussed by
Jacquin in 1989 thesis + 1992 paper

 Works well if there is self
similarity 1n image.



* What should f; do?

- change size of domain block
- change orientation of domain block
- change intensity of pixels

* fx consists of

- geometric transformation : g,

- massic transformation : m K

* g . displacement + size =+ ""Te“‘-'"""/

® My Orientation +-+RteRst-



Transformations:

* gr . displaces + adjusts intensity

easy

* My mK(tij) = i(ocKtij+AK)

I can be

* Rotation by 90, 180, -90
* Reflection about
horizontal, vertical, diagonal

* 1dentity map

* Finding transformations is
compute 1ntensive

e Search through all domain
blocks + all transformations to

find “BEST” one

* Encoding more time than decoding



e If Image is divided mito
N Range blocks — N

transformations  f, k=1..N

are 1ts representation.
/= kk)f k

I=f
I is approximation to I.
* Collage theorem guarantees convergence
to / using any arbitrary 1initial

guess for 1mage.
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FIGURE 13.11 The first six iterations of the fractal decoding process.



VECTOR QUANTIZATION

—

o Let f denote N dimensional vectors constisitng
of N real valued, continuous amplitude scalars.

e Basic Idea: Map f into L possible N dimen-
sional reconstruction vectors 7; for 1 < < L.

~
-— -~

f=vQef) =7 Fec
e Define a distortion measure:

) =

Figure 10.8 Example of vector quantization. The aumber of scalarsy i vector
is 2, and the number of reconstruction levels is 9. e
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Properties of Vector Quantization

e Removes linear dependency between random
variables.

e Removes nonlinear dependency between ran-
dom variables.

e Explits increase in dimensionality.

e Allows us to code a scalar with less than one
bit.

e Computational and storage requirements are
far greater than scalar quantization.
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VQ Removes Linear Dependency
e Linear transformation can decorrelate linearly
dependent (correlated) random variables.
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Figure 10.9 [llustration that vector quantization can exploit linear dependence of i q‘b
scalars in the vector. (a) Probability density function p, 4(f1, f2); (b) reconstruction
levels ([filled-in dots) in scalar quantization; (c) reconstruction levels (filled-in dots)
in vector quantization.

Figure 10.10 Result of eliminating lincar
dependence of the two scalars f, and [
in Figure 10.9 by linear transformation

of f, and f;.
A3/




'VQ Removes Nonlinear Dependency

e Nonlinear dependence cannot be eliminated by
a linear operator.

G
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Figure 10.11 Illustration that vector quantization can exploit nonlinear depend-
ence of scalars in the vector. (a) Probability density function p,, 5(f1, f1); (b)
reconstruction levels (solid dots) in scalar quantization; (c) reconstruction levels
(solid dots) in vector quantization.
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VQ Exploits the Increase in Dimensionality

e The mean square error due to VQ is approxi-
mately less than 4 percent than scalar quanti-
zation. w’\ﬂ' Saml agf relom :sfm‘%i'a'm lev-zls.-
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Codebook Design Algorithms

e K-means algorithm.
e Tree codebooks and binary search.

e Nearest neighbor.
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Codebook Design via K-means

e Exploit the following two necessary conditions
for the optimal solution:

— For a vector f to be quantized to one of
the reconstruction levels, the optimal quan-
tizer must choose the reconstruction level 7; /9 £ L
which has the samllest distortion between '
and 7. 19DV 0o {E ddfwi<difg) UF
— Each reconstruction level 7; must minimize
the average distortion D in Cj.

Minimize E[d(f,7) | f€C] wrt 7

e Find 7; and C; iteratively — Problem: local
versus global minimum — initial guess impor-

tant. intia codabook vector

l

Classification of M traini
ng vectors
to L clusters by quantizstion

J

Estimation of r, by computing
centroid of the vectors withi
sech cluster o

Swp Figure 10.14  Codebook design by the

K- algori ;
Codebook dmigned: Lot r,  tiom, L LOF YeCor quanii
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Complexity of K-means

e M training vectors, L codewords, N dimensional,
R bits per scalar.

e Complexity of Codebook design:

— M L evaluation of distortion measure for each
iteration.

— MLN = NM2"¥R additions and mults per
iteration.

— Example: N= 10, R=2 , M = 10L results in
100 trillion operation per iteration.

= Storage; MN for training vectors, LN for re-
construction levels — (M + 2 R)N oy

e Complexity of operation at the receiver. "

T e
_ Storage of reconstruction levels: N2VR. If
N =10 and R = 2, storage is 10 million.
sl d i

— Number of artithemetic operations N2VE. If
N =10 and R = 2, 10 million operations per

look up.
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Tree Codebook and Binary Search

e Full search is responsible for exponential growth
of the number of operations at the zeceiwer —
Tree codebook. Tomtte .

e Let L be a power of 2.
e Basic operation of tree codebook design:
— Use K-means to divide the /N dimensional

space of f into two regions.

— Divide each of the two regions into two more
regions using the K-means algorithm.

— Repeat step 2 until there are L reconstruc-
tion levels.

Figure 10.15 Exampie of a tree code-

o h h ety g ofy Ry ook,

90



T Ly UCefors
7 et

Complex1ty of Tree Codebook
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¢ Design compleécity' gy of S177=,
/

— Number of ar1thmet1c operations per itera-
tion is 2NM10g2L For N =10 and R =2,
the reducuon\f’étor compared to the full
search is 26, 000.

— Storage: approx1mately the same as full search
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e Operation complexity at reeetver:

— Number of arithmetic operations Is 2IV?R. -
For N =10 and R = 2, the reduction factor
compared to the full search is 26, 000.

— Storage: The codebook must store all the
intermediate reconstruction levels as well as
the final reconstruction levels. — Twice as
much storage needed as full search.

e Distortion of full search is slightly smaller than
that of tree search.
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Nearest Neighbor Design Algorithm

e Initially proposed by Equitz.

e computational complexity grows linearly with
the training set.

e Find the 2 vectors closest to each other, merge
them into another vector equal to their mean,
repeat this process until the number of vectors

is L.

e Main efficiency is achieved by partitioning the
training data into a K-D tree — multiple merges
at each iteration.
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Variations of VQ

e Multistage VQ reduces storage and search time.

1. First stage a low rate VQ.

2. Generate error by subtracting the codeword

from the original.

3. Code the error by a different VQ.
4. Repeat steps 2 and 3.

TO CHAMNEL

INDEX {

INPUT
VECTOR .

CODE
VECTOR 1
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I

vo,

cODE LN ]
VECTOR 2
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Fig. 5.5.2

Multistage Vector Quantization. At each state an error vector is computed,

which is then used as the input to the pext stage of VQ. The decoder merely
computes a summation of the code vectors corresponding to the received indjces,

e Parameter extraction techniques:

— mean and variance of each input vector are
computed and sent separately.

— mean and variance might be coded with DPCM.
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Variations of VQ (cont’d)

—

e Block classification:

— Divide the blocks into several classes accord-
ing to spatial activity.
— Design a codebook for each class.
— Overhead on transmitting the codebook is
large.
e Combine prediction techniques with VQ:

— Coded quantity is the prediction error rather
than intensity values.

e VQ of color images exploits the correlation be-
tween color components.

e Typical rates: .1 to .5 bits per pixel for 4 x 4
pixels as vectors.

94



local measure. such as local image contrast. If the local measure used can be
obtained from previously coded pixel intensities. then it does not have to be trans-
mitted. If the local measure used is obtained directlv from f(n,. n-). it must be
transmitted. since the receiver does not have access to the original image. Adaptive
coding certainly adds complexity to an image coder, but can often significantly
improve its performance.

PCM systems do not exploit the statistical dependence of neighborhood pixel
intensities. One way to exploit the statistical dependence is to use methods such
as DM. DPCM. and two-channel coders. where the difference between f(n,. n-)
and a prediction of f(n,. n.) is coded. An alternate way is to use vector guanti-
zation. As we discussed in Section 10.2. vector quantization can exploit thé sta-
uistical dependence of the parameters coded. Vector quantization has been con-
sidered in coding the waveform f(n,. n.). The blocks used consist of neighborhood
pixel intensities of a small size. tvpically 2 x 2.3 x 3. and 4 x 4. Vector
quantization has been primarily applied in low bit rate (below 1 bit/pixel) appli-
cations. since the computational and storage costs increase rapidly with the block
size and the bit rate. Intelligible images can be reconstructed with some sacrifice
in quality at bit rates below 1 bit/pixel, which is not possible with DM. DPCM. or
two-channel coders with scalar quantization and uniform-length codeword assign- .
ment. For waveform coders. vector quantization is an effective way to code an
image at a bit rate lower than 1 bit/pixel. Figure 10.40 illustrates the performance
of vector quantization when applied to coding the waveform f(n,, n,). Figure
10.40(a} shows an original image of 512 x 512 pixels. Figure 10.40(b) shows the

(b)

Figure 10.40 Example of an image coded by vector quantization. Courtesy of William Equitz.
(a) Original image of 512 x 512 pixels; (b) coded image by vector quantization at 1/2 bit/pixel.
The block size used is 4 x 4 pixels and the codebook is designed by using a variation of the
K-means algorithm. NMSE = 2.7%, SNR = 15.7 dB.

Sec.10.3  Waveform Coding 641





