Image Restoration

3 methods:

1. Inverse filter
2. Least square filters
3. Iterative technique

Key assumption:
Know $d(x,y)$
Blur function.

How about if we don't know $d(x,y)$?
When \(d(u_1, u_2) = \text{blurring } f_x \) is unknown

\[\Rightarrow \text{Blind deconvolution.} \]

\[f \xrightarrow{\text{LTI}} d(u_1, u_2) \xrightarrow{\oplus} g \]

1. **Estimate parameters of the blur \(f_x \).**
 Know what kind of blur...
 - Atmosphere
 - Out of focus
 - Motion

Approach: Look at F.T. of \(g \).

- Zeros of \(b(w_1, w_2) \) tell you about parameters of blur function.
- \(R \) in out of focus case.
- \(\theta \), \(\phi \), motion blur.
Can also look at cepstrum.

\[\text{Spectrum of } G(w_1, w_2) \]
\[\text{Cepstrum of } g = \tilde{g}(n_1, n_2) = - \sum_{k} \text{log} \left| G(w_1, w_2) \right|^2 \]

\[\Rightarrow \]

\[X \overset{\times}{\rightarrow} XY, \text{ multiplicative noise} \]

\[\log(xY) = \log(x) + \log(y) \]

\[\text{apply LT} \]
\[= \log(x) \text{ box } \rightarrow x \]
$xy \rightarrow 1 \log (\log (x) + \log (y)) \xrightarrow{\text{CPP}} \exp \xrightarrow{} x$

$log(y) \rightarrow \mathcal{w}$

$log(x) \rightarrow \mathcal{w}$

Homoomorphic filtering.
Blind deconvolution where nothing is known about blur fn

\[F(w_1, w_2) \rightarrow B(w_1, w_2) \rightarrow G(w_1, w_2) \]

Assumption: \(|B(w_1, w_2)| \) is smooth fn.

\[G(w_1, w_2) = F(w_1, w_2) \cdot B(w_1, w_2) \]

\[|G(w_1, w_2)| = |F(w_1, w_2)| \cdot |B(w_1, w_2)| \]

\[|B(w_1, w_2)| \approx \sqrt{u_1^2 + u_2^2} \]
\[|F(w_1, w_2)| \leq |F(w_1, w_2)|_L + |F(w_1, w_2)|_H \]

slowly varying component

fast varying component

\[= \sqrt{w_1^2 + w_2^2} |F(w_1, w_2)|_H \]
\[\{ \frac{\|L\|^2}{18}\} = \left\{ \frac{\|L\|^2}{18}\right\} + \sum_{i=1}^{10} \frac{\|L\|^2}{18} \]

For the results of the survey, we have:

\[18\|L\|^2 = \frac{\|L\|^2}{18} + \sum_{i=1}^{10} \frac{\|L\|^2}{18} \]

\[18\|L\|^2 = \frac{\|L\|^2}{18} + \sum_{i=1}^{10} \frac{\|L\|^2}{18} \]

\[16\|L\|^2 = \frac{\|L\|^2}{18} + \sum_{i=1}^{10} \frac{\|L\|^2}{18} \]

\[16\|L\|^2 = \frac{\|L\|^2}{18} + \sum_{i=1}^{10} \frac{\|L\|^2}{18} \]
\[
\text{IBL} \approx \text{IBL} \text{ F}_L \left(\frac{1}{\text{SNR}} \right)
\]
Reduction of more than 1 degrades

Convolutional noise + Additive noise

\[f \xrightarrow{\ast} g \xrightarrow{\text{noise}} \hat{f} \]

\[P_r(w_1, w_2) = P_f |D(w)| \]

\[g \xrightarrow{\text{Pr}(w_1, w_2)} \frac{P_r(w_1, w_2)}{P_r + P_{w}} \] (\text{Pr}(w_1, w_2)) \]

\[H(w_1, w_2) : \]

\[\frac{P_f \cdot D^*}{P_f \cdot D \cdot D^* + P_w} \]
Algebraic Degradation

\[f \rightarrow \text{Deg} 1 \rightarrow \text{Deg} 2 \rightarrow \cdots \]

\[\text{Deg} N \rightarrow g \]

\[g \rightarrow \text{Undo} \text{Deg} N \rightarrow \text{Undo} \text{Deg} N-1 \]

Reduction of multiplicative noise

\[f \rightarrow \times \rightarrow g \]

\[g' = f' + w' \]

\[g'(h_1, h_2) = f'(h_1, h_2) w'(h_1, h_2) \]

\[\log(g) = \log f + \log w \]

\[\hat{f} = \exp([\log \text{additive noise red.}]) \rightarrow \text{apply any additive noise reduction technique.} \]
TV Signal:

30 frames/see.
frame \rightarrow even field
frame \rightarrow odd field.

frame: 500 lines.
 each line 500 pixels/line.

\[300 \times 500 \times 80 \times 24 = 5.25 \times 10^8 \text{ bits/see} \]

\approx 500 \text{ Mega bits/see.}

PSTL \approx 600 kbps \sim 1 \text{ mbit/s.}

cable \approx 1 \text{ mbit/s.}
$2 \times 10^8 \text{ bits/s}$.

$2 \times 60 \times 60 = 7200 \approx 10000 \approx 10^4$

$2 \times 10^{12} \text{ bits} \quad \Rightarrow \quad 200 \text{ GB}$

Giga byte = 10^9 bits

for 2 hour TV program.

Get to reduce BW of imagery and video.

Decode

Encode

Corrupt

Trash

Software

ASICs

Barge/Video
live

non-live

one way or two age

audio/video sync