March 8, 2006

Mathematical Aspects/ Derivation of
Histogram Equalization

1. Consider continuous values of intensity.
 Rather than discretized.

2. r is gray level of image to be equalized.

 r normalized to $[0, 1]$

 $0 \rightarrow$ dark = Black

 $1 \rightarrow$ bright = White.

3. Goal: Design a Transformation:

 \[T(r) = S, \quad 0 \leq r \leq 1, \]

 Assumptions about $T(r)$.

1
(a) $T(r)$ single valued and monotonically increasing
in the interval $0 \leq r \leq 1$

for inverse transform to exist

preserve increasing order from black to white in outputting.
(b) \(0 \leq T(r) \leq 1 \) for \(0 \leq r \leq 1 \)

\(\) output grey levels in the same range as input levels.

\[
T(r) = s \\
T^{-1}(s) = r
\]

\(r = \text{input intensity} \)
\(s = \text{output intensity} \)

Result from prob. They:

If \(T^{-1}(s) \) satisfies condition (a) Then.

\[
P_s(s) = P_r(r) \left| \frac{dr}{ds} \right|
\]
Consider CDF as a Trapezium.

\[S = T(r) = \int_0^r P_r(w) \, dw \]

\[\frac{dS}{dr} = \frac{d}{dr} \left(\int_0^r P_r(w) \, dw \right) = P_r(r) \]

\[P_s(s) = P_r(r) \left| \frac{1}{P_r(r)} \right| = 1 \quad 0 \leq s \leq 1 \]

Words: If \(T(r) \) is just a CDF or just the integral of input pdf \((P_r(r)) \), then applying \(T(r) \) results in a image whose pdf \((P_s(s)) \) is Uniform.
Discrete Case

\[\Gamma_k = \text{discrete intensity value} \quad k = 0, \ldots, L-1 \]

\[P_r(\alpha r_k) = \frac{n_k}{n} \quad k = 0, \ldots, L-1 \]

\[n_k = \text{number of pixels that have intensity } r_k \]

\[S_k = T(r_k) = \sum_{j=0}^{K} P_r(r_j) \left\langle \frac{k}{n} \right. \]

\[S_k = \sum_{j=0}^{K} \frac{n_j}{n} \quad k = 0, \ldots, L-1 \]
Histogram Matching

\[T(r) = S \]

Rather than \(P_3(s) \) uniform, we want \(P_3(s) \) to match a "desired" pdf given.

\[r = \text{pixel value before matching} \]
\[z = \text{pixel \"after\" matching} \]

Can compute \(P_z(z) \) from given image.

Know, given \(P_z(z) \)

Goal: what is the transformation \(r \rightarrow z \)?
Approach: \[S = T(r) = \int_0^r P_r(w) \, dw \]

CDF of \(r \).

\[v = G(z) = \int_0^z P_z(t) \, dt \]

CDF of \(z \).

Histogram matching

\[G(z) = T(r) \]

\[z = G^{-1} \{ T(r) \} \]

\[T(z) \]

\[T(r) \]

\[T(0) \]

\[T(\infty) \]

\[0 \rightarrow r_0 \rightarrow r_1 \rightarrow \infty \]

\[v_0 \rightarrow \text{how to find } z_0 \]
Lookuptable

<table>
<thead>
<tr>
<th>r_0</th>
<th>z_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>z_1</td>
</tr>
</tbody>
</table>

$\rightarrow \text{Matched histogram of } P_\theta(z) \text{ desired}$