Transform Image Coding

Transmitter

f{n‘, n:d—__—’-

Transform

Receiver

P

Quantization

;(n,, ny) ~—————

What is exploited: Most of the image energy is concentrated

Inverse
transform

T,k ky)

Titky k2) 1 codeword
- 7| assignment
Decoder [e—mmm—

in a small number of coefficients for some transforms

e the more energy compaction, the better

Some considerations:

e energy compaction in a small number of coefficients

e computational aspect: important (subimage by sub-

image coding — 8x8 - 16 x16)

e transform should be invertible
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Examples of Transforms

1. Karhunen-Loeve Transform

—

Ni=1Ny—1
Frley, ky) = Y S f(ny,ny)~A(ny,ny; ky,kp)
71=O ﬂ2:O

}\.(k],kz)‘A(Hl,nz; kl’kQ) =

N,—1 N,—1
)y > Kf(nl,nz; L) AU, Ly Ky, ky)
k=0 k,=0

Covariance K, (ny,n,; 1), 1) =

E [(.X(H],??2)—X_f(ﬂ],n2>) ' (X(/l, 12)—l_'(11, [2))]

o!”'l .
Comments:
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e optimal in the sense that the coefficients are’uncorrelated

¢ no simple computational algorithm

¢ seldom used in practice L Z have
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Fig. 5.3.8 KLT basis vectors for the image "
N=16 and 4 = 0. For cach m the ¢

orthonormalized eigenvectors of R, ie.,

Ret,, =) 1

Inly = 6,
. Where the eigenvalues {\»x} are nonnegati
' For example, Fig. 5.3.8 shows K]
Karen" in Fig. 5.3.72 using one-dimens;.
cand 4 = 0 The eigenvectors are arr
tigenvalue. Note that, for the most part,
22 8Ccording to increasing frequency, ie., ;

- 3sis vector. Fig. 5.3.9 shows similar ¢
“Orrelation model defined in Chapter -
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K - jonary
Fig. 5.3.7 Images used for coding and statistics. (a) "Karen” has much more statio
statistics than (b) "Stripes.”
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N= BLOCKSIZE fa- where @ is 2 normalization ¢
Fig. 5.3.22  Truncation PSNR versus block size for separable transforms with the image approximate the local behavior

"Karea" when 60 pcreent of the coefficients are kept (p=0.6). compaction. However, the I,
e overall performance in most ¢

size, the higher the encrgy compaction achieved by the transform. Also

two-dimensional blocks achieve more compaction than one-dimensional ”

blocks. Experience has shown that over a wide range of pictures there is i L =
not much improvement in average energy compaction for two dimensional i
block sizes above 8x8 pels. However, individual pictures with higher
nonstationary statistics can always be found for which this rule of thumb is
violated (for example, compare the KLT curves of Fig. 5.3.17 and . o )
Fig.5.3.19). Also, considerable correlation may remain between blocks, Its main utility arises when ima
even though the correlation between pels within a block is largely = 2Um of two uncorrelated images
removed.t32Y) We shall return to this point in a later section. S 2tistics with a KLT that is apy
- The Singular Value Decor
the separable inverse transform

5.3.1f Miscellaneous Transforms ; b

Several other transforms have been studied. For example, the Haaf
Transform{>?#! can be computed from an orthogonal (but not orthonormal)

-~

matrix T that contains anly +1's, —1’s and zeros as shown in Fig. 5.3.23. 9
This enables rather simple and speedy calculation, but at the expense of Where U and ¥ are unitary Ltl—
energy compaction performance.
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Discrete Cosine Transform

IOU'L_) — -F(n M) = -Pn =INE jff—r M) -[('—n,}—bt)
L a
DRT

Comments:

e good energy compaction (better than DFT)

T e

sharp discontinuity no sharp discontinuity

o fast algorithms

e all real coefficients

e most often used in practice (good quality image at bit
rate less than 1 bit/pixel)

e other transforms: Hadamard, Haar, Slant, Sine, ...



The sequence Y(k) is related to y(n) through the 2N-point inverse D
given by

2AN=1

y(n) = N ;0 YWk, 0=n<?2N - 1.

From (3.20), x(n) can be recovered from y(#n) by

x(n) = {y(rl), 0=n=N-1

0, otherwise.
From (3.27), (3.28), and (3.29), and after some algebra,
1| C0) &' T
— =+ C.(k —kQ@n+1)|, 0=n=sN -
xn) = N[ > kle ( )COS2N (2n ) n 1
0,

otherwise.
Equation (3.30) can also be expressed as
RS T
- w(k)C (k) cos — k(Zn + 1), C=n=N -1
x(n) = NLZO (&) an ) "
O)

otherwise.

k=20

where

| =

w(k) =
1, 1=k=N-1].
Equation (3.31) is the inverse DCT relation. From (3.25) and (3.31),

Discrete Cosine Transform Pair
N-1

7
2x(n) cos — k(2n + 1), 0=k=<=N -1
C(k) = 2 w

o

otherwise.

zi~

N-—-1
u
w(k)C (k) cos = k(2n + 1),0=n =N -1
X(ﬂ)-: AZO () () 2N( )

o

>

otherwise.

From the derivation of the DCT pair, the DCT and inverse DCT can be computed -
by

Computation of Discrete Cosine Transform
Step 1. y(n) = x(n) + x(2N — 1 — n)

Step 2. Y(k) = DFT [y(n)] (2N-point DFT computation)
_WERY(K), O0sk=N-1

Step 3. C,(k) = {0, otherwise

152 The Discrete Fourier Transform
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Computation of Inverse Discrete Cosine Transform

Wk2C, (k). 0=k=N—-1
wep 1. Y0k = 10, E=N
: —W5C 2N — k), N+ 1=

k=2N -1

-

= IDFT [Y(k)] (2N-point inverse DFT computation)

Step 3. ¥(1) = 0. otherwise

{y(n)T 0=n=N-1

In computing the DCT and inverse DCT, Steps 1 and 3 are computationallv quite
simple. Most of the computanons are in Step 2, where a 2V-point DFT is computed
for the DCT and a 2N-point inverse DFT 1s computed for the inverse DCT. The
DFT and inverse DFT can be computed by using fast Foutier transform (FFT)
aleorithms. In addition, because y(n7) has symmetry. the 2N-point DFT and inverse
DFT can be computed (see Problem 3.20) by computing the N-point DFT and the
N-point inverse DFT of ap N-point sequence. Therefore. the computation in-
volved in using the DCT is essentially the same as that involved in using the DFT.

In the derivation of the DCT pair, we have used an intermediate sequence
y(n) that has symmetry and whose length is even. The DCT we derived is thus
called an even symmetrical DCT. It is also possible to derive the odd symmetrical
DCT pair in the same manner. In the odd symmetrical DCT, the intermediale
sequence y(n) used has symmetry, but its length is odd. For the sequence x(n)
shown in Figure 3.9(a), the sequence yp(n) used 1s shown in Fjgure 3.9(b). The
length of y(i) 1s 2N — 1, and y(n), obtained by repeating y(n) every 2N — 1
points, has no artificial discontinuities. The detailed derivation of the odd sym-
metrical DCT 1s considered in Problem 3.22. The even symmeltrical DCT is more
commonly used, since the odd symmetrical DCT involves computing an odd-length
DFT, which 1s not very convenient when one is using FFT algorithms.

x(n) Aoy = x(n) + x2N =2 —n) — x{N — N8{(n — (N - 1))

r( |

. 1 |

L . . | 0

E : o-—0—& n | i > /)
E!g. 0 1 2 3 . 0 1 2 3 4 5 ¢

b () b}

4

|
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E

Figure 3.9 Example of (a) x(n) and (b) y(n) = x(n) + x2N - 2 - n) —
x(N = D3(n = (N = 1)). The sequence y(n) is used in the intermediate step :
defining the 0dd symmetrical discrete costne transform of x(n). : 3

-
&
b
3
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e Signal independent

e p —>1 : KLT ---> DCT

for first order
- Markov Image model

o Type 1l DCT:

S(K,, K,) = JNEQC(Kl)C(Kz)

N-1 N-1 n2(n, + DK,
Y > s(nl,nz)cosﬂ —N j
I’Ll:O ﬂ2:_0 _ '

" . (n2(n2 + Dsz -

2N
1 o
— K =o0
C(K) = - J2 -
\1 otherwise
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FIGURE Y2.4 The basis matricos for the DCT.
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The outer products of the rows are shown in Figure 12.4. Notice that the basis matrices
show increased varation as we go from the top left matrix, corresponding to the 8y coefficient,
to the bottom right matrix, corresponding (o the 6y _ (v ~1) coefficient.

The DCT is closely related to the discrete Fourier transform (DFT) mentioned in Chap-
ter 11, and in fact can be obtained from the DFT. However, in terms of compression, the DCT
performs better than the DFT.

Recall that when we find the Founer coefficients for a sequence of length &, we assume that
the sequence is periodic with period M. If the original sequence js as shown in Figure 12.5a, the
DFT assumes that the sequence outside the interval of interest behaves in the manner shown in
Figure 12.5b. This introduces sharp discontinuities, at the beginning and end of the sequence.
In order 1o represent these sharp discontinuities the DEFT needs nonzero coefficients for the
high-frequency components. As these components are needed only at the two endpoints of
the sequence, their effect needs 10 be cancelled out at other points in the sequence. Thus, the
DFT adjusts other coefficients accordingly. When we discard the high-frequency coefficients
(which should not have been there anyway) during the compression pracess, the coefficients
that were cancelling out the high-frequency effect in other pans of the sequence result in the
introduction of additional distortion.



Discarding Transform Coefficients (cont.)

Coefficients with values above a given thres-

Threshold coding:

i..ld are coded

e location as well as amplitude has to be coded

e run-length coding is useful (many zeroes)
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Figure 10.44 Example of bet allocation map at § bivpixel for zoaat discrete cotine

trans(orm unage coding Block ure = 16 x 16 pixels.



Discarding Transform Coefficients

Zonal coding: Eliminate coefficients in a fixed zone

(Ex)
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Scalar Quantization of a Vector Source

e Assume N scalars: f; 1< <N
e Each f; is quantized to L; reconstruction levels.
e Total of B bits to code N scalars.

e Optimum bit allocation strategy depends on
(a) error criterion and (b) pdf of each random
variable.

e Assume we minimize MSE : =¥, E[(f1; — f;)?]
with respect to B; the number of bits for the
1th scalar for 1 < ¢ < N.

e Assume pdf of all f; is the same except they
have different variances.

e Use Lloyd Max quantizer.

e Under these conditions we have:
B 1 o2

Bz' = — + —ZOQ :

N 2 [ijzl 032]1/ N

2

2

1s the variance of f;

O‘.
Li=+% : 1/1VZB/N
[szl o]
e [, 1s the number of reconstructior,‘evels for source
1

e J

4029



i
s
4

RS O NP R W SIL T

L

’
SETIRTE
Lesdin 4.

_ Figure 10.47 D(7-coged 1image wnh
visiblz blocking effecy

and (b) show the resulis of DCT image coding at | bit pixet and ¢ bit'pixel. re-
spectivels.  The original image is the 512 x 512-pixel image shown in Figure
10.45(3). Inboth examples. the subimage size used1s 16 x 16 pixels. and adaptive

zona! coding with the zone shape shown in Figure 10.43(b) and the zone size adapted
10 the local image characieristics has been used.

{b}

Figure 10.48 Example of DCT image coding {a) DCT-coded image at | titpixel. NMSE

= 087%.SNR = 20.7 dB. (b) DCT-coded image a1 bit piael. NMSE = 0.97%. SNR =
20.2 dB.

652 Image Coding  Chap. 10 ~

XS

e m—




n s
N
and
s12¢
2¢ed.

Figure 10.46 [llustranon of graiminest
increase gue to quantizanon of DCT
coctlicients. A 2-bit pixel uniform gquanp-
Lizer was uscq 1o quanuze each DCT
coc{fictent retained 10 reconstiuct the
image 1 Figure 10.45¢h)

and are selecied from a zone of triangular shape shown in Figure 10.43(al. From
Figure 10.45. it is clear that the reconstructed image appears more blurn as we
retain a smaller number of coefficients. Itis also clear that an image reconsiructed
from only a small fraction of the transform coefficients looks quite good. illustrating
the energy compaction property.

Another tvpe of degradation results from quantization of the retained trans-
form coefficiemts. The degradation in this case 1ypically appears as graininess in
the 1mage. Figure 10.46 shows the result of coarse quantizaton of transform
coefficients.  This example is obtained by using a 2-bit umform quantizer {or each
retained coefficient to reconstruct the image in Figure 10.45(b).

A third type of degradation anises from subimage-by-subimage coding. Since
each subimage )s coded independently. the pixels at the subimage boundaries mas
have amficial intensity disconrtinuities. This is known as the blocking effect. and
is more pronounced as the bit rate decreases. An image with a visible blocking
effect is shown in Figure 10.47.- -A DCT with zonal coding. a subimage of 16 x

16 pixels. and a bit rate of 0.15 bit/pixe! were used to generate the image in Figure
10.47.

Examples. To design a transform coder at a given bit rate. different rvpes
of image degradation due 1o quantization have to be carefully balanced by a proper
choice of various design parameters. As was discussed. these parameters include
the transform used. subimage siz¢. selection of which coefficients will be retained.
bit allocauion. and selection of quantization levels. 1f one type of degradanon
dominates owher 1vpes of degradation. the performance of the coder can usually
be improved by decreasing the dominant degradanion at the expense of some
increase in other 1vpes of degradation.

Figure 10.48 shows examples of transform image coding. Figure 10.48(2)

Sec.10.4  Transform Image Coding 651
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Figure 10.50 Example of blocking effect reduction nsing a hltering method. (a) Image
of 512 x 512 pixels with visible blocking effect. The image is coded by a zonal DCT coder
at 0.2 bit/pixel. {(b) Image n (a) ftitered 10 reduce the blocking effect The filter used s a
3 % 3-point iln,. ) with h(D. 0) = } and h(n,. n;) = 3 al the remaining cight points

sejection of the zone shape and size in zonal coding are simpler than those with a
2-D transform coder. Hybrid coding of a single image frame has not been used
extensively in practice, perhaps because the method does not reduce the correlation
10 the data as much as a 2-D transform coder and the complexity in a 2-D transform
coder implementation is not much higher than a hybrid coder. As will be discussed
1 Section 10.6, however, hybnd coding is useful in interframe image coding.

10.4.5 Adaptive Coding and Vector Quantization

Transform coding techniques can be made adaptive to the local characteristics
within each subimage. 1In zonal coding, for exarnple, the shape and size of the

Transmitter

1-D transform Ty(ky, 7g)
along each row -

fln, n,)) ———

1-D wavetorm coding Titkw ny)
along each colump

Codeword
assignment

T lky, ny)

along each row -

Tk, nyl
1-0 waveform reconstrucuon
along each column Decoder [——

Figure 10.51 Hybnd transform/waveform coder.
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Iterative Procedures for Reduction of
Blocking Effects in Transform
Image Coding
Ruth Rosenholtz and Avideh Zakhor

Abstract-—-We propose a new iferaiive block reduction tlechnique
based on the theory of projection onle convex sets. The basic jdea
behind this technique 1s 10 impose a number of constrainés on the coded
image in such a way as (o reslore it to its original artifact-free form. One
such copstraint can be derived by exploiting the faci that the transform-
coded image suffering from blocking effects contains high-frequency
vertica) and horizontal artifacis corresponding 1o vertical and horizontal
discontinuities across boundaries of neighboring blocks. Since (hese
components are missing in the origival uncoded image, or ai Jeast can be
guaranteed to be missing from (he original image prior to coding, one
step of our iterative procedure consists of projecting the coded image
onto the set of signals that are bandlimited in the horizontal or vertical
directions. Another constraint we have chosen in the restoralion process
has to do with the quautizacion intervals of the transfarm coefficients.
Specifically, the decision levels associaled with (ransform coefficient
quantizers can be used as lower and upper bounds on transform coeffi-

Manuscript received June 10, 1991 revised February 3, 1992, This work
has been supported by IBM, Eastman Kodak Company, TRW, and the
National Scicnce Foundarion contract MJP-9057466. This paper was recom-
mended by Associate Editor Dimuniris Anastassiou.

The author is with the Deparument of Electrical Engineering and Com-
puter Sciences, University of California. Berkeley, CA 94720.

IEEE Log Number 9107519.

1051-8215/92303.00

cients, which in {uro define boundaries of the convex set for projection.
Thus, in projecting ihe ‘“out-of-bound”’ transform coefficient onto (hls
convex set, we will choose the upper (lower) bound of the quantizaijon
interval if l{s valac is greater (less) than the upper (lower) bound. We
preseni a few examples of our proposed approach,

I. INTRODUCTION

Transform coding is one of the most widely vsed image compres-
sion techniques. It is based on dividing an image into small blocks,
taking the transform of each block and discarding high-frequency
coefficients and quantizing low-frequency coefficients. Among vari-
ous transforms, the discrete cosine transform (DCT) is one of the
most popular because its performance for certain class of images is
close to that of the Karhunen-Loeve transform (KLT), which is
known to be optimal in the mean squared error sense.

Although DCT is used in most of today’s siandards such as JPEG
and MPEG, its main drawback {s what is usually referred w0 as the
““blocking effecl.”” Dividing the image into blocks prior to coding
causes blocking effects—discontinuities between adjacent
blocks—particularly at low bit rates. In this paper, we present an
iterative technique for the reduction of blocking effects in coded
images.

U, ITERATIVE RESTORATION METHOD

The block diagram of our proposed iterative approach is shown in
Fig. . The basic idea behind our technique is (o impose a number

© 1992 [EEE
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Fig. {. Block diagram of the iterative algorithm.

of constraints on the coded image in such a way as (o restore it [0 its
original artifact-free-form. We derive one such constraint from the
fact that the coded image with N X N blocks has high-frequency
horizontal and vertical artifacts corresponding to the discominuities
at the edges of the N X N blocks. Therefore, one step of our
procedure consists of bandlimiting the image in the horizomal and
vertical directions. We refer to this constraint as the filiering
constraint.

We derive the second constraint from the quantizer and thus refer
to it as the quantization constraint. Because the quantization inter-
vals for each DCT cocfficient is assumed to be known in decoding a
DCT encoded image, the quantization constraint ensures that in
restoring images with blocking effects, DCT coefficients of N x N
blocks remain in their original quantization interval.

If S, denotes the set of bandlimited images, and S, denotes the
set of images whose N X N DCT coefficients lie in specific quanti-
zation intervals, our goal can be stated as that of finding an image in
the intersection of S, and S,. One way to achieve this is to start
with an arbitrary element in cither of the two sets and iteratively
map it back and forth to the other set, until the process converges o
an element in the intersection of the two gets. Under these condi-
tions convergence can be guaranteed by the theory of projection
onto convex sets (POCS) if sets §; and S, are convex, and if the
mapping from each set to the other is a projection [6]. By definition,
the projection of an element x in set A onto set B is equivalent to
finding the closest element, according to some metric, in B o x.

To apply the above idea to our problem, we first notice that two

sets S; and S, are both convex. We also choose the mean squared
error as our metric of closeness. This implies that a projection from
S, to S, can be accomplished by any bandlimitation algorithm such
as ideal Jow-pass filtering. It also implies that projection from §, to
S, can be accomplished by moving N x N DCT coeflicients that
are outside their designated quantization jnterval to the closest
boundary of their respective quantization intervals. For instance, if
a particular N X N DCT coefficient, which is supposed t0 be in the
range [a, b], takes on a value greater than b, it is projected to b.
Alternatively, if it takes on a value smaller than o it is projected
onto a.

Having explained the constraints, convex sets, and projections,
we now summarize our proposed iterative procedure shown in Fig.
1. In the first part of each iteration, we low pass filter, or bandlimit,
the image that has high-frequency horizontal and vertical compo-
nents corresponding to the discontinuities between N X N blocks.
Jo the second part of each iteration we apply the quantization
constraint as follows. First we divide the image into N X N blocks
and take the DCT of each. Then we project any coefficient outside
its quantization range onto its appropriate value. Under these condi-
tions, the POCS theory guarantees that jterative projection between
the sets §; and S, results in convergence to an element in the
intersection of the two sets.

[I1. EXPERIMENTAL RESULTS

Fig. 2(a) shows the original, unquantized 512 X 512 Lena, and
®), (¢), and (d) show its JPEG encoded vegsion to 0.43, and .24,
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@)
Fig. 2(a) Original 512 x 512 image. Lena. 2(b) Lena quantzed to 0.43
bpp. 2(¢) Lena quantized 10 0.24 bpp. 2(d) Lena quantized 10 0.15 bpp.

and 0.15 bpp, respectively. The quantization tables for Figs. 2(b),
(¢), and (@) are included in the Appendix.

Strictly speaking, the band-limitation portion of our algorithun-
corresponds to a true projection if the image under consideration is
convolved wilth an ideal low-pass filtler. Since an ideal low-pass
filter cannot be implemented in practice, we have chosen to approxi-
mate it with a 3 X 3 finite impulse response (FIR) filter of the form

#(0,0) = 0.2042,
h(0,1) = h(0, — 1) = #(1,0) = h(—1,0) = 0.1239 (1)
h(0,2) = h(0, — 2) = 1(2,0) = h(2,0) = 0.0751.

We now show examples of our iterative algorithm. Fig. 3(a) shows
five iterations of our algorithm applied 1o the 0.43-bpp quantized
image of Fig. 2(b). The FIR HAler of (1) was used
for the band-limitation step. As Fig. 2(b) shows, blocking artifact
has been removed without introdocing excessive blurring. For com-
parison purposes, the result of applying the low-pass filter in (1) to
Fig. 2(b) for five times, without applying the quantization con-
straint, is also shown in Fig. 3(b). Although consecutive Jow-pass
filtering removes most of the blocking effect, it blurs the image in a
noticeable way. Wc have found that applying the low-pass filter of
(1) once rather than five times, results in a tess blurry image than in
Fig. 3(b), but at the same time does not remove all the blocking
effect.

Figs. 4(a) and (b) show application of our algorithm to the
0.24-bpp quantized image of Fig. 2(c) for 5 and 20 iterations,
respectively. The FIR filter of (1) was used for the band-limitation
step. As seen, the blocking artifact is better removed in
Fig. 4(b) than in 4(a), while they are as sharp as cach other. For
comparison purposes, Fig. 4(c) and (d) show the result of applying
the low-pass filter of (1) to Fig. 2(c), 5 and 20 times, respectively.
Comparing Fig. 4(c) and 4(d) o Fig. 4(a) and (b), respectively. we
find that the latter pair are more blurry than the former. Thus,
applying the quantization constraint prevents the images from be-
coming excessively blurry.

Fig. 5(a) shows application of our algorithm to the 0.15-bpp
quantized mage of Fig. 2(d) for 20 iterations. The FIR filter of (1)
was used for the band-limitation step. For comparison purposes,
Fig. 5(b) shows the result of applying the low-pass filter of (1) to
Fig. 2(d), 20 times. Comparing Fig. 5(b) 10 5(a), we find that the
latter is considerably more blurcy than the former.

IV. CONCLUSIONS

The major conclusions to be drawn from this paper are as
follows: 1) the proposed iterative algorithm using a 3 X 3 low-pass
filtering of (1) results in images that are free of blocking artifacts
and excessive blurring; 2) low-pass filtering by itself could remove
blockiness but at the expense of increased blurriness.

1t is conceivable (o generate images similar to Figs. 5(a) and 4(b)
without having 10 apply our algorithm for as many as 20 iterations.
Our conjecture is that this could be achieved by increasing the
region of support of the impulse response of the filter of (1). In
practical hardware implementations however, 3 x 3 convolvers are
more readily available than, say, 30 X 30 ones.

We have checked the convergence of our algorithm and found
that it converges after 20 iterations or so. This is encouraging since
there is no guarantee that the intersections of our particular convex
sets is nonempty, and the theory of POCS only guarantees conver-
gence in situations where the intersection is nonempty .

One way to jncreasc the likelihood of convergence is t0 vary the
confidence wrth which the ideal solution iJs in 1he
chosen constraint set, by varying its size. For example, if we choose
prototype constraint sets as in [10]), using the statistics of the



(b)

Fig. 3(a) Result of applying the iterative algorithm to Fig. 2(b) for five
iterations with the low-pass filter of (1) used for bandlimitation. (k) Result of
low-pass filtering Fig. 2(b) five times using the filter in ().

guantization nosse. we can change the boundaries and the size of the
constraint set in & controlled fashion and thercfore increase the
likelihood of a solution in the intersection of the constraint sets.
Examples of such prototype constrain( sets include bounded varia-
tion from (he Weiner solution and poimtwise adaptive smoothuncss.
The latter constraint has the obvious advantage of being locally
adaptive to changes in the characleristics of the image. Projection
onto fuzzy sets is another way of increasing the size of our convex
sets [9).

APPENDIX

The quantization table for Fig. 2(b) 1s

0 24 28 32 36 80 98 144
24 28 34 52 70 128 184
28 28 32 48 74 144 156 150
32 k%! 48 58 112 128 174 196
36 52 74 112 136 162 206 224
80 70 114 128 162 208 242 200
98 128 156 174 206 242 240 206
144 184 190 196 224 200 206 208

For Fig. 2(c) it is

[N
N

60 70 70 90 120 255 25§
60 70 96 130 255 255 255
70 80 120 200 255 255 255
96 120 145 255 255 255 255

2333
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(b}

(d)
Result of applying the iterative algorithm to Fig. 2(c) for §
wterations with the low-pass filter of (1) used for bandlimitation. (b) Resuli of
applying the iterative algorithm to Fig. 2(¢) for 20 itcrations with the
low-pass filter of (1) used for bandlimitation. (¢) Result of low-pass filtering
Fig. 2(c) five times using the filter in (1). (d} Result of low-pass filtering Fig.
2(c) 20 times using the filter in (1).

Fig. 4(a)



Fig. 5(a) Result of applying the iterative algorithm to Fig. 2(d) for 20
iteranons with the low-pass filter of (1) used for bandlimuation. (b) Result ol
low pass filtering Fig 2(d) 20 (imes vsing the filter in (1).

90
120
255
255

255

200
255
255
255

and for Fig. 2(d) it is:

255
255
255
255

255
255
255
255

255
255
255
255

255
255
255
255

a5

10 130 150 192 255 25§ 255 255
130 150 192 255 253 255 255 255
150 192 255 255 255 255 255 255
192 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 25§ 255 25§ 255

The 255 entry in the above (ables indicaies that the coefficient was
discarded.

n
12]

(3)

141

[51

f6]

(7)

18]

(10
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Hybrid Coding

e Combines waveform and transform coding.

— Implementation is simpler than 2-D trans-
~ form coding.

— Better performénce than waveform cocii;ﬂg."

e Basic

Idea:

— Transform an image f(ni,no) by 2 1-D trans-
form such as a 1-D DCt along each row to
obtain Ty(ky,no).

— Remove more redundancy along each col-

e Hybrid coding useful in interframe coding.

umn by DPCM.
T recamitter
f y 3-0 treatorm | ¢4y M [ 5 woveloem coding
M P —’-mlﬂhww 7| ekong sach column

Rucerver

fin,, n,) ~=

Tk, 1)

1.D inverm transtorm

oy each row

> ——

Tk, n,)

1-D waveform reconstruction
»long apch column

Tk, ny)

Figure 10.31 Hybrid aassform/waveform coder.
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Two-Channel Image Coder

Transmitter . Transmig 3
4
A n Y .
’(Il., /)2} !L (n), n)’ ,LS(nP n]] ’Ls(np n}. ’H lnl' n?' 4,;/’:)
»| LPF |——»] Subsample »| PCM Interpolate ————— . :‘\
Transmit o
i -
A N [
i 2 W Q)
\ . N o
~— .‘\ o . - - (’
A ¥ N :’-S)
Acceiver ' \3 3 - - -
~ - f 0, ny) . ) o
f 4{n,, n,)— |Interpolation PO =
> \)\ -
. b

;(n,, )

~
/{0y, nyl

fi (n;,n0): Can be under-sampled (typically by 8x8), but requires above 5
bits/sample

Cannot be under-sampled, but can be coarsely quantized (2-3

f” (”l , Ilz) .
bits/pixel)

Bit rate = -2 + 2-3 bits/pixel = 2-3 bits/pixcl |



{a) {b)

Figure 10.32 Evxample of image coding by a 1wo-channe] coder. (2} Onpinal image of £12
> 12 piels. th) coded tmage at 2 piisspinel NMSE = 1.0%, SNR = 198 dB

It is possible 10 develop many image representations {Rosenfetd] that can be
viewed a¢ pyvramids. In this section. we discuss one parricular representation
developed by |Burt and Adelson). This pyramid representalion consisis of an
onginal image and successivelv lower resolution (blurred) images and can be used
for 1mage coding

Lei £.{n,. n-) denote an ongwnal image of N » N pixels where N = 2Y = 1.
for example. 129 x 129,257 x 257,513 x 513.and so forth. }t1s straightforward
10 generate an image of (2Y = 1) x (2 ~ 1) pixels from an image of 2% x 2Y
pixels. for example. by simply repeating the last column once and the last ron
once. We assume a square image for simplicity. We will refer 10 fy(n,. n.) as
the base level image of the pyramid. The image at one level above the base is
obtained by lowpass hitenng f,(n,. n.) and then subsampling the result. Suppose

we filter f(ny,. n-) with a lowpass filier h(n,. ny) and denoie the result b
f&(n,. n<j so that

fEny. nz) = L|fo(ny. n2)) = folny. ns) = hy(ny. ns) (10.43)

where L[-] is the lowpass filtering operation. Since f5(nr,. n.) has a lower spaual
resoluvon than f,(n,. n.) due 1o lowpass filtering. we can subsample f5(n,. n;). We
denote the result of the subsampling operation by fi(n,. n<}. The image f (1. ;)
1s smaller 1n size than f,(n,. n.) due 10 subsampting and is the 1mage at one level
above the base of the pyramid. We will refer 10 f,(»1,. 15) as the first-level image
of the prramid. The second-level image. fu(n,. 1,). is obtained by lowpuss tiltering
the first-level image f;(7,. ny) and then subsampling the result. This procedure
can be repeated 10 generate higher level images f.(n,. n-). £,01,. n11). and so forth.

Sec.10.3 Wavetorm Coding 633
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Pyramid Coding and Subband Coding

e Basic Idea: Successive lowpass filtering and
subsampling.

ft(n,. ng)
e Subtample > 1,110y, N3

£in,, ny) ——> Lowpss finering
I ——

Figure 10.33 Process of generating the i + 1th-level image f,-{(n,. n;) from the

@th-level image f{n,, n,} in Gaussian pyramid image represcnradon.

e Filtering:
fEnyn) = filni,ng) * hing,no)

¢ Subsampling.

| _ | #2041, 2ny) 0 < nyymp < 2471
fz+1(n1,n2) 0 Otherwise

e Type of filter determines the kind of pyramid.

-~ Gaussian pyramid: h(ni,ng) = h(nl)h(nz}

o) n=~0
h(n) = % n = =1
1 % n=x2
a is between .3 and .6
109




Pyramid Coding and Subband Coding

e Application to image coding:

— Code successive images down the pyramid
~_from the ones above it.

— Use intrafram coding techniques to code the
image at top of the pyramid.

— Interpolate f;11(ni1,mn9) to obtain a predic-
tion for fi(ni,ns). ‘

~

filni,na) = I[fita(n1, ma)]
— Code the prediction error:
ei(ni,my) = filny,na) — fi(ny, no)
‘to comstruct fi(ni,ng).

— Repeat until the bottom level image, i.e. the
original 1s reconstructed.

e The sequence f;(n;,ny) is a Gaussian Pyramid.

e The sequence e;(ny,ny) is a Laplacian Pyramid.

e Other examples of Pyramid coding:

— Subband coding.
— Wavelet coding.

110
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12(ny, ny! ( o.lny, 03 )
Interpolation

Figure 10.37 Laplacian pyramid gener-
ation. The base image fo(n1,. n,) can be

Y
( Lot 0,0 ) <,‘_‘ (n,, n’)> recoastructed from e(n,, ny) lor 0 s 1 <
— B K — 1 and f{n,, ny).




Figure 10.36 Exampie of the Gaussian prramid representauion {ormmage of 31
with K = 4

>
~
u

(o
b=
>
el
&

The Gaussian pyvramid representation can be used in developing an approach
10 image coding. To code the original smage f,(11,. ni-). we code f,(n.. n:) and the
difierence berween f(n,. n.) and a prediction of f(n,. .) from f{n, 1.} Suppose
we preaict f(n,. n-) bv interpolating f,(n.. ny). Denoung the interpotated image
by Sl n2). we find that the error signal e(n,. n.) coded is

eplny. nay = foliny. sy ~ 1 fi(n0n2)j (10,36
= folny. ) = filnyony)

where /(] is the spatialinterpolation operation  The interpolanon process expands
the support size of fy(n,. ny). and the support size of f/(n,. n.) 15 the same as
foln,. ns). One advantage of coding fi(n,. ny) and ey(n,. n.) rather than fo(n,. n) 18
that the coder us2d can be adapted 0 the charactenstics of f\(n,. n:) and e in,. 1.

Ii we do not quantze f,(n,, n.) and ey(n,. n.). from (10.48) f(n,. n.) can be recovered
exactly by

folry. na) = 1{fy(ny. n2)} = eo(ny. ma). (10.=7)

Inimage coding. /y(n,. ny) and ey(n,. n,) are quantized and the reconstructed image
So01,. )18 obtained from (10.47) bv

Jolny. ma) = 1[fy(n,. n3)]) + &o(n,. 12 (104

where fy(n,. n2) and &,(n,. n.) are quantized versions of f,(n,. n.) and ¢y(n,. ny).
1f we stop here. the structure of the coding method is identical to the two-channe!
coder we discussed in the previous section. The image f,(n,. 1) ¢an be viewed
as the subsampied iows component f, (n,. n.) and e,(n,. n,) can be viewed as 1he
highs componeri j, (1. 11:) in the system in Figure 10.31.

636 image Cocing  Chap. 10




Figure 10.38 Example of the Laplacian pyramid image representation with K = 4. The
onginal image used s the 513 x 513-pixel umage fo(n, n;) in Figure 10.36. ¢,(n,, n.) for
0=1:=x3and f(n,. n).

the difference of the two Gaussian functions. The difference of two Gaussians
can be modeled [Marr) approximately by the Laplacian of a2 Gaussian, hence the
name “Laplacian pyramid."”

From the above discussion, the pyramid coding method we discussed can be
viewed as an example of subband image coding. As we have stated briefly, in
subband image coding, an image is divided into different frequency bands and each
band is coded with its own coder. In the pyramid coding method we discussed.
the bandpass filtering operation is performed implicitly and the bandpass filters
are obtained heuristically. In a typica! subband image coder, the bandpass filters
are designed more theoretically [Vetterli; Woods and O'Neil).

Figure 10.39 illustrates the performance of an image coding system in which
fx(ny, ny) and e,(ny, n,) for 0 < i = K~ are coded with coders adapied 1o the
signal characteristics. Qualitatively, higher-level images have more vanance and
more bits/pixel are assigned. Fortunately, however, they are smaller in size. "Fig-
ure 10.39 shows an image coded at § biupixel. The original image used is the 513
X S$13-pixel image fo(n,, n,) in Figure 10.36. The bit rate of less than 1 bitpixel
was possible in this example by entropy coding and by exploiting the observation
that most pixels of the 513 x 513-pixel tmage eq(ny, n,) are quantized to z¢€r0.

One major advantage of the pyramid-based coding method we discussed
above is its suitability for progressive data transmission. By first sending the top-
level image fy(n,. n:) and interpolating it at the receiver, we have a very blurred
image. We then transmit ex.(n;, n,) to reconstruct fe_,(n,, #.), which has 2
higher spatia} resolution than fx(n), n;). As we repeat the process. the recon-
structed tmage at the receiver will have successively higher spatial resojution. In
some applications, it may be possible to stop the transmission before we fully

Sec.10.3 Waveform Coding 639



Figure 10.3% Example of 1he Laplacian
pytamid image coding with K = 4 a
o i bivpinel. The ongmal 1mage used 16
; /_‘ 5 the 513 x S13-pixel imaee fin,. n:) 10
. X Figure 10.36.

recover the base level image f,(i,. n,). For example, we mav be able to judge
from a blurred image that the image is not whar we want. Fortunatelv. the images
are transmitted from the top 1o the base of the pvramid. The size of images
increases by approximately a factor of four as we go down each level of the pyramid
In addition to image coding. the Laplacian pyramid can also be used in other
applications. For example. as we discussed above. the result of repentive inter-
polation of ¢,(n,. nn,) such that its size is the same as that of f,(n,. n.) can be viewed
as approximately the result of filtering fo(n,. n,) with the Laplacian of a Gaussian.
As we discussed in Section 8.3.3. zero-crossing points of the result of filtering

fo(ny. n») with the Laplacian of a Gaussian are the edge points in the edge detection
method by Marr and Hildreth.

10.3.6 Adaptive Coding and Vector Quantization

The waveform coding techniques discussed in previous sections ¢an be modified
10 adapt to changing local image characteristics. In a PCM svstem. the recon-
struction levels can be chosen adaptively. In a DM system. the step size A can
be chosen adaprively, In regions where the intensity varies slowly. for example.
A can be chosen to be small to reduce granular noise. Inregions where the intensity
increases or decreases rapidty. A can be chosen to be large to reduce the slope
overload distortion problem. In a DPCM system, the prediction coefficients and
the reconstruction levels can be chosen adaptively. Reconstruction levels can also
be chosen adaptively in a two-channel coder and 2 pyramid coder. The number
of bits assigned to each pixel can also be chosen adaptively in all the waveform
coders we discussed. In regions where the quantized signal varies very slowly. for
example. we may want to assign a smaller number of bitg/pixel. It 15 also possible
to have a fixed number of bits/frame. while the bit rate vanes at a pixel level.

In adaptive coding, the parameters in the coder are adapted based on some

640 Image Coding Chap. 10
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Subband Coding

= HO ¢2___>_,T\2 GO
X(n)L .

K() = 31Hy(©)Gy(0) + H,(0)G,(@)]X(0) +

[Hy(o + S)GO((D) + H{(0+71)G(0)] X(®+ )

DN —

Consider QMF Filters:
Hy(®) = Gy(-0) = F(o)

H,(0) = G,(-0) = ¢°F(- ® + 1)

— X(®) = 2[F(0)F(-0) + F(- 0 + 1) F(0 + )] 1/

DO | =

IMPOSE:  |F(0)|* + |F(w+m)|” = 2

— X(0) = X(0w) — Perfect Reconstruction



Filter Design:

e QMF filters:

hy(n) = (-1)"h (N -1-n)
N = # of taps
e Johnston’s filter coefficients
ho(N—=1-n) = hy(n)

NPR

———= symetric
8 tap Johnston filters:

h (0) = h(7) = 0.00938
h (1) = h(6) = 0.06942

h(2) = h(5) = -0.07065
h(3) = h(4) = 0.489980



Filter Design

e (Cannot have linear phase FIR filters
for QMF condition except for trivial
2 tqp flter

——— amplitude distortion

e Well known filters
Hy(w) = A(w) Gy(w) = B(w)

H (o) = eij(go+n)
G, (0) = e /A0 +1)

a(n) = [1,2,1]
b(n) = [-1,2,6,2,-1]

— simple to implement

proposed by LeGall



Filter Design:

* Smith and Barnwell

h(0) = 0.03489

h(1) = -0.0109
h(2) = -0.0628
h(3) = 0.2239

h(4) = 0.55685
h(5) = 0.35797
h(6) = -0.0239
h(7) = -0.0759



Bit Allocation in Subband Coding:

R = Average # of bits per sample

Ry = Average # of bits per sample of subband K

M = # of subbands

Oy = variance of coefficients in subband K:
1 02
K
M

M-,
1T (og)
K=1



2D Subband Coding
e Separable ----- > FEasy to immplement

e Nonseparable

Separable subband Coding:

—=— H,y
Hox
Hy
X(”p nz) —
——— H,y
H, x
H,y

Analysis



FREQUENCY DOMAIN

highpass




Wavelets

)+ A special kind of Subband Transform

« Historically developed independent of
subband coding

HO
Hy—) 2
Hy=—| 2 Hyr
X(n)— Hy—=, 2
Hy— 2
< /
/ \(nalysis
H.H, X(w)
Designed
specially to
be Wavelet
Decomposition
—24 3102 1




Famous Wavelet Filters

2 e Daubechies

e Haar

e Coiflet

4 Tap Daubechies I.ow Pass

h(0) = 0.4829
A(1) = 0.8365
h(2) = 0.22414
h(3) = —0.1294
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