Image Restoration

1. Enhancement → Image "look" better
 Subjective improvement

2. Restoration
 Image has been degraded by smoothing
 - noise
 - blur
 - Atmospheric turbulence

 Objective model → Error → MSE
\[g(x,y) = h \ast f + n \]

\[g^\prime(x,y) = h(x,y) \ast f(x,y) + \text{noise} \]

\[f(x,y) \]
minimize $E\left[(f(x, y) - \hat{f}(x, y))^2 \right]$

Today.

H is identity.
only corruption \rightarrow noise.

$g(x, y) = f(x, y) + \eta(x, y)$

Assume noise is independent of spatial coordinates, uncorrelated w.r.t. image itself.
Gaussian

\[p(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x - \mu)^2}{2\sigma^2}} \]

\[\text{var} = \sigma^2 \]

\[\mu \text{ is the mean} \]

- Sensor noise due to poor illumination or high temperature
- Electronic noise

70% of values are within one sigma
\([-\sigma, \sigma]\)

95% within two sigma.
(2) Rayleigh:

\[p(z) = \begin{cases} \frac{2}{b} (2 - a) & z \geq a \\ 0 & z < a \end{cases} \]

\[\mu = a + \sqrt{\frac{6\pi}{b}} \]

\[6^2 = \frac{6(4 - \pi)}{4} \]

noise in range imaging apps.
3) Exponential (Gamma) noise:
\[p(z) = \begin{cases} \frac{ze^{-\frac{z^2}{2\sigma^2}}}{(2\sigma)^{b-1}B(b-1)} & z > 0 \\ 0 & z < 0 \end{cases} \]

4) Exponential special case of Exponential:
\[p(z) = \begin{cases} ae^{-az} & z > 0 \\ 0 & z < 0 \end{cases} \]

\(\mu = \frac{b}{a} \)
\(\sigma^2 = \frac{b}{a^2} \)

Laser imaging
3. Uniform:
\[p(z) = \begin{cases} \frac{1}{b-a} & \text{if } a \leq z \leq b \\ 0 & \text{otherwise} \end{cases} \]

\[\mu = \frac{a+b}{2} \quad \text{Random # generator} \]

6. Impulse, Salt/Pepper noise, quick transit, faulty switching
\[p(z) = \sum P_a \delta(z-a) + P_b \delta(z-b) \]

if \(b > a \), 0 show up as light dots
\(\text{ otherwise } \) dark dot.
1. Arithmetic Mean.

\[
\hat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} g(s,t)
\]

2. Geometric Mean.

Similar to arithmetic but lose less detail.

\[
\hat{f}(x,y) = \left[\prod_{(s,t) \in S_{xy}} g(s,t) \right]^{1/mn}
\]
3. Harmonic mean filter.

\[\hat{F}(x, y) = \frac{m \cdot n}{\sum_{(s, t) \in S_{xy}} \frac{1}{g(s, t)}} \]

4. Contour Harmonic.

\[\hat{f}(x, y) = \frac{1}{\sum_{(s, t) \in S_{xy}} g(s, t)} \sum_{Q \geq 0} g(s, t) \]

Q \geq 0 \rightarrow \text{removes pepper noise}

Q < 0 \rightarrow \text{removes salt noise}
1. Median:
 - Locate S_{xy}. Find median replaces S_{xy} with the median value.

2. Max:
 - Also removes some dark pixels.

3. Min:
 - Also removes some white pixels.

4. Midpoint
 - $f(xy) = \frac{1}{2} \left\{ \max + \min \right\}.$
\[\hat{f}(x, y) = \frac{1}{mn - p} \sum_{(s, t) \in S_{xy}} g_\Theta(x, y) \]

\[S_{xy} \text{ max.} \]

\[g_{r}(s, t) \rightarrow g(s, t) \text{ excluding, } d/2 \text{ brightest grey levels} \]

\[\text{and } d/2 \text{ darkest } \]

\[\text{Grayscale layout} \]
Adaptive local noise Reduction

\[\hat{f}(x, y) = g(x, y) - \frac{\hat{\sigma}^2}{\sigma_L^2} (g(x, y) - m_L) \]

\[m_L = \text{local mean} = \frac{1}{mn} \sum_{(x,t) \in S_{x,y}} g(x, t) \]

\[\sigma_L^2 = \text{local variance}. \]

\[\sigma_N^2 = \text{noise variance}. \]

if \(\sigma_N^2 \ll \sigma_L^2 \) \(\Rightarrow \hat{f} \approx g \) good

if \(\sigma_N^2 \gg \sigma_L^2 \) then. approx. \(\frac{\sigma_N^2}{\sigma_L^2} \approx 1 \)

\[\Rightarrow f \ll m_L \]
Adaptive Median Filter
looking at neighborhood S_{xy} around

$P_{xy} = \max_{i,j} I_{i,j}$

Spatial domain

Additive noise

Frequeny domain

Additive Gaussian noise
- $Z_{\text{min}} = \text{min value in } S_{xy}$
- $Z_{\text{med}} = \text{median value in } S_{xy}$

Outline

- Keep increasing window size until Z_{med} is not an impulse. $Z_{\text{min}} < Z_{\text{med}} < Z_{\text{max}}$

- When this happens, check Z_{xy}.
 - If Z_{xy} is not an impulse \rightarrow output Z_{xy}
 - If Z_{xy} is an impulse \rightarrow output Z_{med}

Since Z_{med} is not an impulse.
Psuedo code

part A
if $Z_{\text{min}} < Z_{\text{med}} < Z_{\text{max}}$
Then go to part B. \(\Rightarrow Z_{\text{med}} \) is not an impulse.
else if window size \(\leq S_{\text{max}} \)
window \(\leftarrow \) window + 1, go to part A
else output Z_{xy}

part B
if $Z_{\text{min}} < Z_{xy} < Z_{\text{max}}$
output Z_{xy}\(\Rightarrow Z_{xy} \) is not an impulse.
else output Z_{med}