Euge Rontoul

Frequency domain techniques

Periodic noise

What if interference pattern is not "clean"?

Sources of periodic interference patterns:

- Coupling and amplification of low level signals in electrical/optical scanners' electronic circuits.
Approach

1) First isolate principal contributions (spikes) of the interface pattern.

2) Subtract a variable weighted portion of the pattern from the corrupt image.

Objective: i.e. e.g. minimize local variance of a processed image.
\[g(x,y) \leftrightarrow G(\omega_1, \omega_2) \quad \text{observed degraded signal.} \]

\[f(x,y) \leftrightarrow F(\omega_1, \omega_2) \quad \text{clean signal.} \]

\[\hat{f}(x,y) \leftrightarrow \hat{F}(\omega_1, \omega_2) \quad \text{proceed to reconstruction of \(f \).} \]
Step 1: Put a notch filter \(H(w_1, w_2) \) at location of each spike.

Find filter

\[
N(w_1, w_2) = H(w_1, w_2) G(w_1, w_2)
\]

noise

\[
y(x, y) = \mathcal{F}^{-1} \left\{ \mathcal{F} \left\{ H(w, w_2) G(w, w_1) \right\} \right\}
\]

noise in space domain.
Step 2

\[f(x, y) = g(x, y) - w(x, y) \cdot \nabla f(x, y) \]

Optimization: Choose local weight \(w(x, y) \) to minimize local variance of \(f \) at \((x, y) \)

Weight function

Choose local weight \(w(x, y) \) to minimize local variance of \(f \) at \((x, y) \)

Neighborhood \((2a + 1) \times (2b + 1)\)

Local variance over this neighborhood:

\[
\sigma^2_{xy} = \frac{1}{(2a+1)(2b+1)} \sum_{s=-a}^{a} \sum_{t=-b}^{b} \left(f(x+s, y+t) - \hat{f}(x, y) \right)^2
\]
\[\bar{f} = \text{local mean} = \hat{f}(x, y) = \frac{1}{(2a + 1)(2b + 1)} \sum \sum_{s=-a \atop \text{even}}^{a} \hat{f}(x+s, y+t) \]

Plug in \(\hat{f} = g - w(x, y) \) into

Assume \(w(x, y) \) is constant over \([2a + 1] \times [2b + 1]\) region.

\[w(x+s, y+t) = w(x, y) \]

\(s, t \in [-a + b] \times [-b, b] \)
Estimating the degradation for

Observation

Go to parts of g

that you have
apriori knowledge.

See how it looks.

Compare to what it should have looked like.

Make some intelligent guess about

\(\text{signal and noise} \)

Experiment: Put a known signal

into your system to calibrate.
Modeling

Steele + Huthzegel.

Atmospheric turbulence:

\[
H(\omega, \omega) = e^{-k \left(\omega^2 + \omega_i^2 \right)^{5/6}}
\]

Motion blur.
Restoration

Degradation $\rightarrow g$ \rightarrow Restoration $\rightarrow \hat{f}$

as close as possible.

Degradation can be modelled as:

$\hat{f} + \text{noise} \xrightarrow{LSTM} \hat{f} \rightarrow g$

Use domain specific knowledge to model degradation.
Motion Blur modeling

\[g(x, y) = \int_T f(x - x_0(t), y - y_0(t)) \, dt \]

\[g(x, y) = \int_T f(x - x_0(t), y - y_0(t)) \, dt \]

\[g(x, y) = \int_T f(x - x_0(t), y - y_0(t)) \, dt \]

\[G(w_x, w_y) = \int \int g(x, y) \, e^{-j2\pi (w_x x + w_y y)} \, dx \, dy \]

F.T. \[G(x, y) = \int \int g(x, y) \, e^{-j2\pi (w_x x + w_y y)} \, dx \, dy \]
\[
G(w_x, w_y) = \int_0^T \left(\int_0^\infty \left(\int_{-\infty}^{\infty} f(x-x_0(t), y-y_0(t)) e^{-j2\pi(w_x x + w_y y)} \, dx \, dy \right) \, dt \right) \, dt
\]

\[
= \int_0^T F(w_x, w_y) e^{-j2\pi(w_x x_0(t) + w_y y_0(t))} \, dt.
\]

\[
G(w_x, w_y) = F(w_x, w_y) \int_0^T e^{-j2\pi(w_x x_0(t) + w_y y_0(t))} \, dt
\]

\[
H(w_x, w_y)
\]

- \(x_0(t) = 0 \quad y_0(t) = 0 \implies G(x, y) = T + (x, y) \)

- \(x_0(t) = \frac{at}{T} = \text{constant speed along x direction} \quad y_0(t) = 0 \)

\[
G(w_x, w_y) = F(w_x, w_y) + H(w_x, w_y)
\]
\[H(\omega_x,\omega_y) = \int_0^T e^{-j\omega_y t} e^{j\omega_x t} dt \]

\[= \int_0^T e^{j(\omega_x - \omega_y) t} dt \]

\[H(\omega_x,\omega_y) = \frac{T}{\sin(\pi \omega_x \alpha)} e^{-j\pi \omega_x \alpha} \]

| \[H(\omega_x,\omega_y) \] |
\[G(w_x, w_y) = \underbrace{F(w_x, w_y) \cdot H(w_x, w_y)}_{\frac{1}{H(w)}} + \text{Noise} \]
Stationarity

\[
P_{x(t_1), x(t_2), \ldots, x(t_n)}(X_1, X_2, X_3, \ldots, X_n) =
\]

\[
P_{x(0), x(t_2-t_1), \ldots, x(t_n-t)}(X_1, X_2, \ldots, X_n)
\]