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Examples of Transforms

1. Karhunen-Loeve Transform
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Fig. 5.3.22  Truncation PSNR versus block size for separable transforms with the image

"Karen" when 60 percent of the coefficients are kept (p=0.6).

size, the higher the energy compaction achieved by the transform. Also
two-dimensional blocks achieve more compaction than one-dimensional
blocks. Experience has shown that over a wide range of pictures there is
not much improvement in average energy compaction for two dimensional
block sizes above 88 pels. However, individual pictures with higher
nonstationary statistics can always be found for which this rule of thumb is
violated (for example, compare the KLT curves of Fig. 5.3.17 and
Fig.5.3.19). Also, considerable correlation may remain between blocks,
even though the correlation between pels within a block is largely
removed.’5*2!) We shall return to this point in a later section.

5.3.1f Miscellaneous Transforms

Several other transforms have been studied. For example, the Haar
Transform'*33! can be computed from an orthogonal (but not orthonormal)

-

matrix T that contains only +1’s, —1’s and zeros as shown in Fig. 5.3.23:
This enables rather simple and speedy calculation, but at the expense of
energy compaction performance.

g

= Basic Compression Techniques

== Fig. 5.3.23 Haar transform matri

multiplications.

The Slant Transform!%39!
vector t;, a basis vector t, give

t, = a(N‘-l, N-

where « is a normalization ¢
. approximate the local behavior
compaction. However, the 1,
overall performance in most c:
been developed for the Slant Tr
~ The Sine Transform!5319 |

IrJ"J'u'
m m, = 1..

Its main utility arises when ima,
Sum of two uncorrelated images

.. The Singular Value Decor
the separable inverse transform

here U and ¥ are unitary Ltl=




Chapter §
constructed from a tw
the L-pel rows end-to-end
ot only high adjacent pe]
Is with separation L. Thug
y large not only at low3
L, etc. Fig. 5.3.19 shows =
¢ transform coded in thig “en
ing the largest MSV are*
1an those of Fig. 5.3.17 by"

rels the most often used
using two L-dimensional
Recall that with separable't
d transform the rows and :

; when the separable DCT &51i's
lata from "Stripes”. Note 277
tencies compared with the

rertical correlation in this

the results of separable -
icture "Karen" when only 32"
LT was derived from the ==
; of pels, We see that the =¥
separable KLT. This is
inot adapt very well to
all block size of 1xL pels.
e DCT is only a few dB 35
9. It is this characteristic
1sform of choice in many

NR results for p = 60%.
proves as the block size -
:ly small for block sizes > |
e
: important parameters ..
nts although the picture %ﬁk{
lly, the larger the block:

Basic Compression Techniques 413

H
)
2
[+
=z
w
o

20 - -

10 = 1 L 1 1 +

0 0.2 0.4 08 0.8 10

P(FRACTION OF COEFFICIENTS SENT)

60 fF T T T T B
@
=
[
=
L]
o

10 ! I 1 1 _s

o] 02 0.4 06 08 1.0

P (FRACTION OF COEFFICIENTS SENT)
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(a) 4x4 blocks, N=16. (b) 16x16 blocks, N=256.




Discrete Cosine Transform

-fan._} — -F(n m) = -E(.n _,Hc’n )3 F 6, P )H[('-ﬂy—*h)

J/ 7
DRT
G2

Comments:

2 good Erierpy compactlon (better than DFT)

T, s

sharp discontinuity no sharp dlscontmuny

o fast algorithms
e all real coefficients

~ e most often used in practice (good quality image at bit
rate less than 1 bit/pixel)

e other transforms: Hadamard, Haar, Slant, Sine, ...
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k=0
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From (3.20), x(n) can be recovered from y(n) by
0=n=N-1

_ Jy(n),
xn) = {0, otherwise.

From (3.27), (3.28), and (3.29), and after some algebra,

1[c0
N
0,

y(n) = 0=n=2N-1.

™

N-1
+ C,(k) cos
x(n) = 2 J\zl ( ) 2}\(

k(2n + IJ:I, O0=n=N -

otherwise.
Equation (3.30) can also be expressed as

N-—1

; ™
= w(k)C. (k) cos=— k(2n + 1), 0=n=N -1
x(n} = Jl\' Z 2(\‘
0, otherwise.
> k=0
where w(k) =
1, 1=k=N-1
S

Equation (3.31) is the inverse DCT relation.

From (3.25) and (3.31),
Discrete Cosine Transform Pair
N-1
m
2 cos— k(2n + 1), 0=k=N -1
o 4 2, 20 con g kn + 1),
0, otherwise.
l N-1 T
. w(k)C (k) cos — k(2n + 1),0=n=N - 1
x(n) = N =o ()C(k) 2N ( )
0, otherwise.

From the derivation of the DCT pair, the DCT and inverse DCT can be computed
by

Computation of Discrete Cosine Transform
Step 1. y(n) = x(n) + x2N — 1 — n)

Step 2. Y(k) = DFT [y(n)] (2N-point DFT computation)
WEZY(k), O0=sk=N -1
Stepd. k)= 0.2)\ = otherwise
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The Discrete Fourier Transform

The sequence Y(k) is related to y(n) through the 2N-point inverse D
given by
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Computation of Inverse Discrete Cosine Transform
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= IDFT [Y(k)] (2N-point inverse DFT computation)
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[ 51

In computing the DCT and inverse DCT, Steps 1 and 3 are computationally quite
simple. Most of the computations are in Step 2, where a 2N-point DFT is computed
for the DCT and a 2N-point inverse DFT is computed for the inverse DCT. The
DFT and inverse DFT can be computed by using fast Fourier transform (FFT)
algorithms. In addition, because y(n) has symmetry, the 2N-point DFT and inverse
DFT can be computed (see Problem 3.20) by computing the N-point DFT and the
N-point inverse DFT of an N-point sequence. Therefore, the computation in-
volved in using the DCT is essentially the same as that involved in using the DFT.
In the derivation of the DCT pair, we have used an intermediate sequence
y(i) that has symmetry and whose length is even. The DCT we derived is thus
called an even symmetrical DCT. It is also possible to derive the odd symmetrical
DCT pair in the same manner. In the odd symmetrical DCT, the intermediate
sequence y(n) used has symmetry, but its length is odd. For the sequence x(n)
shown in Figure 3.9(a), the sequence y(n) used is shown in Figure 3.9(b). The
length of y(n) is 2N — 1, and y(n), obtained by repeating y(n) every 2N — 1
points, has no artificial discontinuities. The detailed derivation of the odd sym-
metrical DCT is considered in Problem 3.22. The even symmetrical DCT is more
commonly used, since the odd symmetrical DCT involves computing an odd-length
DFT, which is not very convenient when one is using FFT algorithms.

& xinl A yinl=xin + x2N -2 —n) = xIN = 1)8{n — (N - 1))

e
—

|
¢ ‘ T
® i ® ‘ |9
i |
i A , . L,
3 0 1 2 3 0 1 2 3 4 5 8

la) {b)

Figure 3.9 Example of (a) x(rn) and (b} ¥(n} = x(n) + x(2N - 2 - n) -
x(N = 1)8(n — (N - 1)). The sequence y(n} is used in the intermediate step in
defining the odd symmetrical discrete cosine transform of x(n).

Sec. 3.3 The Discrete Cosine Transform




o Signal independent
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e Type II DCT:
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FIGURE 12.4 The basis matrices for the DCT.

The outer products of the rows are shown in Figure 12.4. Notice that the basis matrices
show increased variation as we go from the top left matrix, corresponding to the fgg coefficient,
to the bottom right matrix, corresponding to the 8y _)y-) coefficient.

The DCT is closely related to the discrete Fourier transform (DFT) mentioned in Chap-
ter 11, and in fact can be obtained from the DFT. However, in terms of compression, the DCT
performs better than the DFT.

Recall that when we find the Fourier coefficients for a sequence of length N, we assume that
the sequence is periodic with period N. If the original sequence is as shown in Figure 12.5a, the
DFT assumes that the sequence outside the interval of interest behaves in the manner shown in
Figure 12.5b. This introduces sharp discontinuities, at the beginning and end of the sequence.
In order to represent these sharp discontinuities the DFT needs nonzero coefficients for the
high-frequency components. As these components are needed only at the two endpoints of
the sequence, their effect needs to be cancelled out at other points in the sequence. Thus, the
DFT adjusts other coefficients accordingly. When we discard the high-frequency coefficients
(which should not have been there anyway) during the compression process, the coefficients
that were cancelling out the high-frequency effect in other parts of the sequence result in the
introduction of additional distortion.



Discarding Transform Coefficients (cont.)

Coefficients with values above a given thres-

Threshold coding:
1.uld are coded

e Jocation as well as amplitude has to be coded

e run-length coding is useful (many zeroes)
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Figure 10.44 Example of bit allocation map at { bitpixel for zonal discrete cosine

transform image coding. Block size = 16 x 16 pixels.
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Discarding Transform Coefficients

Zonal coding: Eliminate coefficients in a fixed zone
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Scalar Quantization of a Vector Source

e Assume NV scalars: f; 15 74 N
e Fach f; is quantized to L; reconstruction levels.
e Total of B bits to code N scalars.

e Optimum bit allocation strategy depends on
(a) error criterion and (b) pdf of each random
variable.

e Assume we minimize MSE : =¥, E[(f1; — fi)]
with respect to B; the number of bits for the
1th scalar for 1 <7 < N.

e Assume pdf of all f; is the same except they
have different variances.

e Use Lloyd Max quantizer.

e Under these conditions we have:
2

B = b + 1Zog %
N 2 L o2
e 07 is the variance of f;
Li—— % o

L, o7

e [;1s the number of reconstructio:y{evels for source
i




Figure 10.47 DCT-coded image with
visible blocking effect.

and (b) show the resulis of DCT image coding at 1 bit pixel and ¢ bit'pixel. re-
spectivelv. The original image is the 512 x 512-pixel image shown in Figure
10.45(a). Inboth examples. the subimage size used is 16 x 16 pixels. and adaptive

zonal coding with the zone shape shown in Figure 10.43(b) and the zone size adapted
to the local image characteristics has been used.

(b}

Figure 10.48 Exampie of DCT image coding. (a) DCT-coded image at | biwpixel. NMSE

= 0.8%.SNR = 20.7 dB. (b) DCT-coded image at : bitpixel. NMSE = 0.9%. SNR =
20.2dB
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Figure 10.46 Illustranion of graiminess
increase due to gquantizanon of DCT
coefficients. A 2-bit pixel umiorm quan-
uizer was used 10 guanuze each DCT
coefficient retamned to reconstruct the
image in Figure 10.45(b).

and are selected from a zone of triangular shape shown in Figure 10.43(a). From
Figure 10.45. it is clear that the reconstructed image appears more blurry as we
retain a smaller number of coefficients. Itis also clear that an image reconstructed
from only a small fraction of the transform coefficients looks quite good. illustrating
the energy compaction property.

Another type of degradation results from quantization of the retained trans-
form coefficients. The degradation in this case tvpically appears as graininess in
the image. Figure 10.46 shows the result of coarse quantization of transform
coefficients. This example is obtained by using a 2-bit uniform quantizer for each
retained coefficient to reconstruct the image in Figure 10.45(b).

A third type of degradation arises from subimage-by-subimage coding. Since
each subimage is coded independently. the pixels at the subimage boundaries may
have artificial intensity discontinuities. This is known as the blocking effecr. and
is more pronounced as the bit rate decreases. An image with a visible blocking
effect is shown in Figure 10.47.--A DCT with zonal coding. a subimage of 16 x

16 pixels. and a bit rate of 0.15 bit/pixel were used to generate the image in Figure
10.47.

Examples. To design a transform coder at a given bit rate. different tvpes
of image degradation due to quantization have to be carefully balanced by a proper
choice of various design parameters. As was discussed. these parameters include
the transform used. subimage size. selection of which coefficients will be retained.
bit allocation. and selection of quantization levels. If one type of degradation
dominates other types of degradation. the performance of the coder can usually
pe improved by decreasing the dominant degradation at the expense of some
increase in other types of degradation.

Figure 10.48 shows examples of transform image coding. Figure 10.48(a)

Sec.10.4  Transform Image Coding 651 )
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Figure 10.50 Example of blocking effect reduction using a filtering method. (a) Image
of 512 x 512 pixels with visible blocking effect. The image is coded by a zonal DCT coder
at 0.2 bit/pixel. (b) Image in (a) filtered to reduce the blocking effect. The filter used is a
3 % 3-point h(n,, n,) with A(0, 0) = tand h(n,, n,) = 1 at the remaining eight points.

selection of the zone shape and size in zonal coding are simpler than those with a
2-D transform coder. Hybrid coding of a single image frame has not been used
extensively in practice, perhaps because the method does not reduce the correlation
in the data as much as a 2-D transform coder and the complexity in a 2-D transform
coder implementation is not much higher than a hybrid coder. As will be discussed
in Section 10.6, however, hybrid coding is useful in interframe image coding.

10.4.5 Adaptive Coding and Vector Quantization

Transform coding techniques can be made adaptive to the local characteristics
within each subimage. In zonal coding, for example, the shape and size of the

Transmitter

1-D transform Telky 19)
along each row 4

: ?‘,’fk,, ny)
F(ny, ny) 1-D waveform coding v

along each column

Codeword
assignment

T,k . Tk, 1
"[ v 12 1.0y waveform reconstruction j[ 1w 12)
along each column e

along each row+ |

Decoder [——

Figure 10.51 Hybrid transform/waveform coder.
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Iterative Procedures for Reduction of
Blocking Effects in Transform
Image Coding

Ruth Rosenholtz and Avideh Zakhor

Abstract—We propose a new iterative block reduction technique
based on the theory of projection onto convex sets. The basic idea
behind this technique is to impose a number of constraints on the coded
image in such a way as to restore it to its original artifact-free form. One
such constraint can be derived by exploiting the fact that the transform-
coded image suffering from blocking effects contains high-frequency
vertical and horizontal artifacts corresponding to vertical and horizontal
discontinuities across boundaries of neighboring blocks. Since these
components are missing in the original uncoded image, or at least can be
guaranteed to be missing from the original image prior to coding, one
step of our iterative procedure consists of projecting the coded image
onto the set of signals that are bandlimited in the horizontal or vertical
directions. Another constraint we have chosen in the restoration process
has to do with the quantization intervals of the transform coefficients.
Specifically, the decision levels associated with transform coefficient
quantizers can be used as lower and upper bounds on transform coeffi-

Manuscript received June 10, 1991; revised February 3, 1992, This work
has been supported by IBM, Eastman Kodak Company, TRW, and the
National Science Foundation contract MIP-9057466. This paper was recom-
mended by Associate Editor Dimintris Anastassiou.

The author is with the Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, CA 94720.

IEEE Log Number 9107519.

cients, which in turn define boundaries of the convex set for projection.
Thus, in projecting the ‘‘out-of-bound’’ transform coefficient onto this
convex set, we will choose the upper (lower) bound of the quantization
interval if its value is greater (less) than the upper (lower) bound. We
present a few examples of our proposed approach.

I. INTRODUCTION

Transform coding is one of the most widely used image compres-
sion techniques. It is based on dividing an image into small blocks,
taking the transform of each block and discarding high-frequency
coefficients and quantizing low-frequency coefficients. Among vari-
ous transforms, the discrete cosine transform (DCT) is one of the
most popular because its performance for certain class of images is
close to that of the Karhunen-Loeve transform (KLT), which is
known to be optimal in the mean squared error sense.

Although DCT is used in most of today’s standards such as JPEG
and MPEG, its main drawback is what is usually referred to as the
“‘blocking effect.”” Dividing the image into blocks prior to coding
causes blocking effects—discontinuities between adjacent
blocks—particularly at low bit rates. In this paper, we present an
iterative technique for the reduction of blocking effects in coded
images.

II. ITERATIVE RESTORATION METHOD

The block diagram of our proposed iterative approach is shown in
Fig. 1. The basic idea behind our technique is to impose a number

1051-8215/92%03.00 © 1992 IEEE
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Fig. 1. Block diagram of the iterative algorithm.

of constraints on the coded image in such a way as to restore it to its
original artifact-free-form. We derive one such constraint from the
fact that the coded image with N X N blocks has high-frequency
horizontal and vertical artifacts corresponding to the discontinuities
at the edges of the N X N blocks. Therefore, one step of our
procedure consists of bandlimiting the image in the horizontal and
vertical directions. We refer to this constraint as the filtering
constraint,

We derive the second constraint from the quantizer and thus refer
to it as the quantization constraint. Because the quantization inter-
vals for each DCT coefficient is assumed to be known in decoding a
DCT encoded image, the quantization constraint ensures that in
restoring images with blocking effects, DCT coefficients of N x N
blocks remain in their original quantization interval.

If S, denotes the set of bandlimited images, and S, denotes the
set of images whose N X N DCT coefficients lie in specific quanti-
zation intervals, our goal can be stated as that of finding an image in
the intersection of S, and S,. One way to achieve this is to start
with an arbitrary element in either of the two sets and iteratively
map it back and forth to the other set, until the process converges to
an element in the intersection of the two sets. Under these condi-
tions convergence can be guaranteed by the theory of projection
onto convex sets (POCS) if sets S, and S, are convex, and if the
mapping from each set to the other is a projection [6]. By definition,
the projection of an element x in set A onto set B is equivalent to
finding the closest element, according to some metric, in B to x.

To apply the above idea to our problem, we first notice that two

sets S, and S, are both convex. We also choose the mean squared
error as our metric of closeness. This implies that a projection from
S, to S, can be accomplished by any bandlimitation algorithm such
as ideal low-pass filtering. It also implies that projection from S, to
§, can be accomplished by moving N X N DCT coefficients that
are outside their designated quantization interval to the closest
boundary of their respective quantization intervals. For instance, if
a particular N X N DCT coefficient, which is supposed to be in the
range [a, b], takes on a value greater than b, it is projected to b.
Alternatively, if it takes on a value smaller than a it is projected
onto a.

Having explained the constraints, convex sets, and projections,
we now summarize our proposed iterative procedure shown in Fig.
1. In the first part of each iteration, we low pass filter, or bandlimit,
the image that has high-frequency horizontal and vertical compo-
nents corresponding to the discontinuities between N X N blocks.
In the second part of each iteration we apply the quantization
constraint as follows. First we divide the image into N X N blocks
and take the DCT of each. Then we project any coefficient outside
its quantization range onto its appropriate value. Under these condi-
tions, the POCS theory guarantees that iterative projection between
the sets S, and S, results in convergence to an element in the
intersection of the two sets.

III. EXPERIMENTAL RESULTS

Fig. 2(a) shows the original, unquantized 512 X 512 Lena, and
(b), (c), and (d) show its JPEG encoded version to 0.43, and 0.24,
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(d)

Fig. 2(a) Original 512 x 512 image, Lena. 2(b) Lena quantized to 0.43
bpp. 2(c) Lena quantized to 0.24 bpp. 2(d) Lena quantized to 0.15 bpp.

and 0.15 bpp, respectively. The quantization tables for Figs. 2(b),
(¢), and (d) are included in the Appendix.

Strictly speaking, the band-limitation portion of our algorithm-
corresponds to a true projection if the image under consideration is
convolved with an ideal low-pass filter. Since an ideal low-pass
filter cannot be implemented in practice, we have chosen to approxi-
mate it with a 3 X 3 finite impulse response (FIR) filter of the form

h(0,0) = 0.2042,
h(0,1) = h(0, — 1) = A(1,0) = h(-1,0) = 0.1239 (1)
h(0,2) = A0, — 2) = h(2,0) = A(2,0) = 0.0751.

We now show examples of our iterative algorithm. Fig. 3(a) shows
five iterations of our algorithm applied to the 0.43-bpp gquantized
image of Fig. 2(b). The FIR filter of (1) was used
for the band-limitation step. As Fig. 2(b) shows, blocking artifact
has been removed without introducing excessive blurring. For com-
parison purposes, the result of applying the low-pass filter in (1) to
Fig. 2(b) for five times, without applying the guantization con-
straint, is also shown in Fig. 3(b). Although consecutive low-pass
filtering removes most of the blocking effect, it blurs the image in a
noticeable way. We have found that applying the low-pass filter of
(1) once rather than five times, results in a less blurry image than in
Fig. 3(b), but at the same time does not remove all the blocking
effect.

Figs. 4(a) and (b) show application of our algorithm to the
0.24-bpp quantized image of Fig. 2(c) for 5 and 20 iterations,
respectively. The FIR filter of (1) was used for the band-limitation
step. As seen, the blocking artifact is better removed in
Fig. 4(b) than in 4(a), while they are as sharp as each other. For
comparison purposes, Fig. 4(c) and (d) show the result of applying
the low-pass filter of (1) to Fig. 2(c), 5 and 20 times, respectively.
Comparing Fig. 4(c) and 4(d) to Fig. 4(a) and (b), respectively, we
find that the latter pair are more blurry than the former. Thus,
applying the quantization constraint prevents the images from be-
coming excessively blurry.

Fig. 5(a) shows application of our algorithm to the 0.15-bpp
quantized image of Fig. 2(d) for 20 iterations. The FIR filter of (1)
was used for the band-limitation step. For comparison purposes,
Fig. 5(b) shows the result of applying the low-pass filter of (1) to
Fig. 2(d), 20 times. Comparing Fig. 5(b) to 5(a), we find that the
latter is considerably more blurry than the former.

IV. CoNcLUsIONS

The major conclusions to be drawn from this paper are as
follows: 1) the proposed iterative algorithm using a 3 x 3 low-pass
filtering of (1) results in images that are free of blocking artifacts
and excessive blurring; 2) low-pass filtering by itself could remove
blockiness but at the expense of increased blurriness.

It is conceivable to generate images similar to Figs. 5(a) and 4(b)
without having to apply our algorithm for as many as 20 iterations.
Our conjecture is that this could be achieved by increasing the
region of support of the impulse response of the filter of (1). In
practical hardware implementations however, 3 x 3 convolvers are
more readily available than, say, 30 x 30 ones.

We have checked the convergence of our algorithm and found
that it converges after 20 iterations or so. This is encouraging since
there is no guarantee that the intersections of our particular convex
sets is nonempty, and the theory of POCS only guarantees conver-
gence in situations where the intersection is nonempty.

One way to increase the likelihood of convergence is to vary the
confidence with which the ideal solution is in the
chosen constraint set, by varying its size. For example, if we choose
prototype constraint sets as in [10], using the statistics of the




(b)

Fig. 3(a) Result of applying the iterative algorithm to Fig. 2(b) for five
iterations with the low-pass filter of (1) used for bandlimitation. (b) Result of
low-pass filtering Fig. 2(b) five times using the filter in (1).

quantization noise, we can change the boundaries and the size of the
constraint set in a controlled fashion and therefore increase the
likelihood of a solution in the intersection of the constraint sets.
Examples of such prototype constraint sets include bounded varia-
tion from the Weiner solution and pointwise adaptive smoothness.
The latter constraint has the obvious advantage of being locally
adaptive to changes in the characteristics of the image. Projection
onto fuzzy sets is another way of increasing the size of our convex
sets [9].

APPENDIX

The quantization table for Fig. 2(b) is

20 24 28 32 36 80 98 144
24 24 28 34 52 70 128 184
28 28 32 48 74 114 156 190
32 34 48 58 112 128 174 196
36 52 74 112 136 162 206 224
80 70 114 128 162 208 242 200
98 128 156 174 206 242 240 206
144 184 190 196 224 200 206 208

For Fig. 2(c) it is

50 60 70 70 90 120 255 255
60 60 70 96 130 255 255 255
70 70 80 120 200 255 255 255
70 96 120 145 255 255 255 255

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 2, NO. 1, MARCH 1992

(d)

Fig. 4(a) Result of applying the iterative algorithm to Fig. 2(c) for 5
iterations with the low-pass filter of (1) used for bandlimitation. (b) Result of
applying the iterative algorithm to Fig. 2(c) for 20 iterations with the
low-pass filter of (1) used for bandlimitation. (c) Result of low-pass filtering
Fig. 2(c) five times using the filter in (1). (d) Result of low-pass filtering Fig.
2(c) 20 times using the filter in (1).
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Fig. 5(a) Result of applying the iterative algorithm to Fig. 2(d) for 20
iterations with the low-pass filter of (1) used for bandlimitation. (b) Result of
low pass filtering Fig. 2(d) 20 times using the filter in (1).

90
120
255
255

130
255
233
255

200
255
255
255

and for Fig. 2(d) it is:

[ ST o I ]
h Lh Lh
h Lh Lh

255
255
235
255

255
255
255
255

255
255
255
255

255
255
255
255

110 130

150 192 255 255 255 255

130 150 192 255 255 255 255 255
150 192 255 255 255 255 255 299
192 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255

The 255 entry in the above tables indicates that the coefficient was
discarded.

{11
[2]

3]

[4]

[51

[6]

[71

(8]

(91
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e Combines waveform and transform coding.

Hybrid Coding

— Implementation is simpler than 2-D trans-

____form (_:Odi_n g

— Better performémce than waveform cod_igl_g."“

e Basic Idea:

e Hybrid coding useful in interframe coding.

— Transform an image f(n1,n9) by a 1-D trans-
form such as a 1-D DCt along each row to

obtain T¢(ki,ng).

— Remove more redundancy along each col-

umn by DPCM.

* Transmitter

T,lk,, n,)
£l Ry —— 1-D traeaform | 7V 2

1-D waveform coding

slong sach row s

Recwiver

slong sach column

~
Tylky, ny)

;(::, sl s 1-D irverse transform l’tih. n,l

slong sach row

1-D weveform reconstruction o
shong each column i B

?";Ik,, n,)

Figure 10.51 Hybrid transform/waveform coder.
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Figure 10.55 Interframe hybrid coder.
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e

Two-Channel Image Coder

Transmitter ; Transmit .E‘ "_
fin,, n,) f (n,, ny) fislny, ny) ?Ls{n,, n,) ?t (n,, ny) f,(n,, ny) f.(a, ny) ;,-"'il'v'
»{ LPF »1 Subsample =1 PCM + »1 Interpolate Pd‘(M | . _‘:‘."
\ Transmit o
‘_ {" i f :‘M’} N ‘-‘_“E}:
o & =
O T, 5
\"__-, .\ ” ;_E}
Receiver o : \“) <& = .
a filn, ny) B
f sln,, ny) —{Interpolation T e
(O \-_.-\ et
) &5 %
: ;“{n‘, n,) ?l"u ny) :
i ; r
fL (ny,ny): Can be under-sampled (typically by 8x8), but requires above 5
bits/sample
fu (nl,nz): Cannot be under-sampled, but can be coarsely quantized (2-3
bits/pixel)

Bit rate = % + 2-3 bits/pixel = 2-3 bits/pixel E



(a) (b)

Figure 10.32 Example of image coding by a two-channel coder. {a) Onginal image ot 512
» 312 pixels: (b1 coded image at 3: bus'pixel. NMSE = 1.0%. SNR = 19.8 dB

It is possible to develop many image representations [Rosenfeld] that can be
viewed as pvramids. In this section. we discuss one particular representation
developed by [Burt and Adelson]). This pyramid representation consists of an
original image and successivelv lower resolution (blurred) images and can be used
for image coding.

Let f.(n,. n-) denote an original image of N' x N pixels where ' = 2% = 1.
for example. 129 x 129.257 x 257,513 x 513. and so forth. Itis straightforward
10 generate an image of (2¥ <+ 1) x (2 + 1) pixels from an image of 2" x 2V
pixels. for example. by simply repeating the last column once and the last row
once. We assume a square image for simplicity. We will refer 10 fy(n,. ns) as
the base level image of the pyramid. The image at one level above the base is
obtained by lowpass filtering f,(n,. n.) and then subsampling the result. Suppose
we filter f,(n,. n-.) with a lowpass filter h,(n,. n.) and denote the result by
f&(n,. n-) so that

filnyons) = L{fy(n,. ns)] = fylny. na) = hy(n,. ns) (10.43)

where L[] is the lowpass filtering operation. Since f5(n,. n.) has a lower spatial
resolution than f,(n,. n,) due to lowpass filtering. we can subsample f5(n,. n,). We
denote the result of the subsampling operation by f,(n1,. n.). The image f,(n,. n;)
is smaller in size than f,(n,. n.) due 10 subsampling and is the image at one level
above the base of the pyramid. We will refer to f,(#n,. n,) as the first-level image
of the pyramid. The second-level image. fi(n,. n.). is obtained by lowpass filtering
the firsi-level image f;(n,. n,) and then subsampling the result. This procedure
can be repeated to generate higher level images fi(n,. ns). fi(n,. n,). and so forth.
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Pyramid Coding and Subband Coding

e Basic Idea: Successive lowpass filtering and
subsampling.

fring f,.4(ny, 03)
1,0, nqy) —{ Lowpass filtering ‘*ﬂl——“ 141 (P4, M

Figure 10.33 Process of generating the i + 1th-level image f..!(n,, n,) from the
ith-level image f{n,, n;) in Gaussian pyramid image representanon.

e Filtering:
fz'L(nlan.?) = fi(ni,n2) * h(ni, ny)

e Subsampling.

. _ [ fE(2n4, 2n,) 0 < ny,np < 2M-1
firi(na,ng) = 0 Otherwise

e Type of filter determines the kind of pyramid.
~-e Gaussian pyramid: h(ny,nz) = h(n1)h(ngy

a =0
lm) = -%— w = =]
i % i
a is between .3 and .6
109




Pyramid Coding and Subband Coding

e Application to image coding:

— Code successive images down the pyramid
~from the ones above it.

— Use intrafram coding techniques to code the
image at top of the pyramid.

— Interpolate f;y11(n1,m9) to obtain a predlc-
tion for f;(n1,no).

filn1,m2) = I[fipa(na, no))
— Code the prediction error:
ei(n,n2) = fi(n,ma) — fi(ny,ne)
‘to comstruct f;(ni,ng).

— Repeat until the bottom level image, i.e. the
original is reconstructed.

e The sequence f;(n;,n2) is a Gaussian Pymmzd
e The sequence e;(ny,n9) is a Laplaczan Pyramid.
e Other examples of Pyramid coding:

— Subband coding.
— Wavelet coding.
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Figure 10.37 Laplacian pyramid gener-
ation. The base image fy(n,, n;) can be
reconstructed from e{n,, n;) for0si=

K — 1and fe(n,, ny)..
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Figure 10.36 Exampie of the Gaussian pyramid representation for image of 313 » 313 pixels
with A = 4.

The Gaussian pyramid representation can be used in developing an approach
1o image coding. To code the original image f,(n,. n-). we code f,(n,. n-) and the
difference between f,(n,. n.) and a prediction of f,(n,. n.) from f,(n,. n-). Suppose
we predict f,(#n,. n-) by interpolating fy(n,. n,). Denoting the interpolated image
by fi(n,. n.). we find that the error signal e,(n,. n.) coded is

folnyo ny) = I fi(n,. ny)]
folny. ny) = fi(ny, ny)

where /{-]is the spatial interpolation operation. The interpolation process expands
the support size of fi(n,. n.). and the support size of fi{(n,. n.) is the same as
foln,. n.). One advantage of coding f,(n,. n,) and ey(n,. n.) rather than fy(n,. n-) 1s
that the coder used can be adapted to the charactenstics of f,(n,. n.) and e,(n,. n-).
If we do not quanuze f,(n,. n-) and ey(n,. n.), from (10.46) fy(11,. n.) can be recovered
-exactly by

I

eoln,. n1)

(10.46)

folny. na) = I{fi(ny. n2)] + eg(ny. na). (10.47)
In image coding. f,(n,. n,) and ey(n,. n,) are quantized and the reconstructed image
foln,. n,) is obtained from (10.47) by

folny. ma) = I[fi(ny. n)] + &o(ny. ) (10.43)

where fy(n,. n,) and éy(n,. n-) are quantized versions of fy(n,. n.) and ey(n,. n-).
If we stop here. the structure of the coding method is identical to the two-channe!
coder we discussed in the previous section. The image f,(n,. n.) can be viewed
as the subsampied lows component f; s(n,. n.) and eq(n,. n,) can be viewed as the
highs component f(n,. n.) in the system in Figure 10.31.

636 image Coding  Chap. 10




Figure 10.38 Example of the Laplacian pyramid image representation with X = 4. The
original image used is the 513 x 513-pixel image fo(n,, n:) in Figure 10.36. e(n,, n;) for
0=is3andfi(n,. ns).

the difference of the two Gaussian functions. The difference of two Gaussians
can be modeled [Marr] approximately by the Laplacian of a Gaussian, hence the
name “Laplacian pvramid.”

From the above discussion, the pyramid coding method we discussed can be
viewed as an example of subband image coding. As we have stated briefly, in
subband image coding, an image is divided into different frequency bands and each
band is coded with its own coder. In the pyramid coding method we discussed.
the bandpass filtering operation is performed implicitly and the bandpass filters
are obtained heuristically. In a typical subband image coder, the bandpass filters
are designed more theoretically [Vetterli; Woods and O'Neil].

Figure 10.39 illustrates the performance of an image coding system in which
fx(n,, ny) and e,(n,, n,) for 0 = i = K-1 are coded with coders adapted to the
signal characteristics. Qualitatively, higher-level images have more variance and
more bits/pixel are assigned. Fortunately, however, they are smaller in size. Fig-
ure 10.39 shows an image coded at } bitpixel. The original image used is the 513
x 513-pixel image fo(n,, n,) in Figure 10.36. The bit rate of less than 1 bit/pixel
was possible in this example by entropy coding and by exploiting the observation
that most pixels of the 513 x 513-pixel image eq(n,, n,) are quantized to zero.

One major advantage of the pyramid-based coding method we discussed
above is its suitability for progressive data transmission. By first sending the top-
level image f(n,, n.) and interpolating it at the receiver, we have a very blurred
image. We then transmit ex_,(n;, n;) to reconstruct fx_,(n,, n,). which has a
higher spatial resolution than fx(n;, n;). As we repeat the process. the recon-
structed image at the receiver will have successively higher spatial resolution. In
some applications, it may be possible to stop the transmission before we fully
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Figure 10.39 Example of the Laplacian
pyramid image coding with K = 4 a1

{ bivpixel. The original image used 1s
the 513 x 513-pwxel image fin,. n:) 10
Figure 10.36.

recover the base level image f,(n,. n,). For example. we mav be able to judge
from a blurred image that the image is not what we want. Fortunatelv. the images
are transmitted from the top to the base of the pyramid. The size of images
increases by approximately a factor of four as we go down each level of the pyramid.

In addition to image coding. the Laplacian pyramid can also be used in other
applications. For example. as we discussed above. the result of repetitive inter-
polation of e,(n,. n,) such that its size is the same as that of fy(n,. n,) can be viewed
as approximately the result of filtering fy(n,. n.) with the Laplacian of a Gaussian.
As we discussed in Section 8.3.3. zero-crossing points of the result of filtering

fo(ny. n,) with the Laplacian of a Gaussian are the edge points in the edge detection
method by Marr and Hildreth.

10.3.6 Adaptive Coding and Vector Quantization

The waveform coding techniques discussed in previous sections can be modified
to adapt to changing local image characteristics. In a PCM system. the recon-

struction levels can be chosen adaptively. In a DM system. the step size A can

be chosen adaptively. In regions where the intensity varies slowly. for example.
A can be chosen to be small to reduce granular noise. Inregions where the intensity
increases or decreases rapidly. A can be chosen to be large to reduce the slope
overload distortion problem. In a DPCM system. the prediction coefficients and
the reconstruction levels can be chosen adaptively. Reconstruction levels can also
be chosen adaptively in a two-channel coder and a pyramid coder. The number
of bits assigned to each pixel can also be chosen adaptively in all the waveform
coders we discussed. In regions where the quantized signal varies very slowly. for
example. we may want to assign a smaller number of bits/pixel. It is also possibie
to have a fixed number of bits/frame. while the bit rate varies at a pixel level.

In adaptive coding. the parameters in the coder are adapted based on some
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Subband Coding
= HO ‘J, 2.._ B B K § recaspo IP 2 GO

X(n_)J» )
- Hl "L 2_.___ g g g Aeam| 1\ 2 > GI

K(®) = 5[H(0)Gy(®) + H,(0)G,(0)) X(w) +

%[HO((,O + )Gy (0) + H, (0 + )G, ()] X(0 + 1)
Consider QMF Filters:

Hy(w) = Gy(-w) = F(w)

H (0) = G,(-0) = ¢/°F(— o + 1)

— X(0) = 5[F(0)F(-0) + F(- 0+ 1) F(o + 1) ] /)

DO =

IMPOSE:  |F(®)|” + |F(® +7)|* = 2

— X(0) = X(®w) — Perfect Reconstruction




Filter Design:

e QMF filters:
hy(n) = (=1)"h (N-1-n)
N = # of taps

e Johnston’s filter coefficients

ho(N—-1-n) = hy(n)

—— symetric NPR

8 tap Johnston filters:
h (0) = h(7) = 0.00938
h (1) = h(6) = 0.06942

h(2) = h(5) = -0.07065
h(3) = h#4) = 0.489980




Filter Design

e (Cannot have linear phase FIR filters
for QMF condition except for trivial

2 tap filter

—— amplitude distortion

e Well known filters
Hy(w) = A(w) Gy(w) = B(w)

H,(0) = ¢/°B(w+m)
G,(0) = e’ A0 +1)

a(n) = [1,2,1]
b(n) = [-1,2,6,2,-1]

— simple to implement

proposed by LeGall




Filter Design:

* Smith and Barnwell

h(0) = 0.03489

h(1) = -0.0109
h(2) = -0.0628
h(3) = 0.2239

h(4) = 0.55685
h(5) = 0.35797
h(6) = -0.0239
h(7) = -0.0759




Bit Allocation in Subband Coding:

R = Average # of bits per sample

R, = Average # of bits per sample of subband K

M = # of subbands

Gr = variance of coefficients in subband K:

2
o
RK=R+%log ,—=

M 251;1
IT (ok)
¥=1




2D Subband Coding

e Separable -----

e Nonseparable

Separable subband Coding:
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> Easy to implement
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) » A special kind of Subband Transform

* Historically developed independent of

Wavelets

subband coding
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Famous Wavelet Filters

 Daubechies

e Haar

e Cotiflet

4 Tap Daubechies Low Pass

h(0) = 0.4829
h(1) = 0.8365
h(2) = 0.22414
h(3) = —0.1294
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