Pyramid Coding and Subband Coding

e Basic Idea: Successive lowpass filtering and
subsampling.

ft(n,. ng)
e Subtample > 1,110y, N3

£in,, ny) ——> Lowpss finering
I ——

Figure 10.33 Process of generating the i + 1th-level image f,-{(n,. n;) from the

@th-level image f{n,, n,} in Gaussian pyramid image represcnradon.

e Filtering:
fEnyn) = filni,ng) * hing,no)

¢ Subsampling.

| _ | #2041, 2ny) 0 < nyymp < 2471
fz+1(n1,n2) 0 Otherwise

e Type of filter determines the kind of pyramid.

-~ Gaussian pyramid: h(ni,ng) = h(nl)h(nz}

o) n=~0
h(n) = % n = =1
1 % n=x2
a is between .3 and .6
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Pyramid Coding and Subband Coding

e Application to image coding:

— Code successive images down the pyramid
~_from the ones above it.

— Use intrafram coding techniques to code the
image at top of the pyramid.

— Interpolate f;11(ni1,mn9) to obtain a predic-
tion for fi(ni,ns). ‘

~

filni,na) = I[fita(n1, ma)]
— Code the prediction error:
ei(ni,my) = filny,na) — fi(ny, no)
‘to comstruct fi(ni,ng).

— Repeat until the bottom level image, i.e. the
original 1s reconstructed.

e The sequence f;(n;,ny) is a Gaussian Pyramid.

e The sequence e;(ny,ny) is a Laplacian Pyramid.

e Other examples of Pyramid coding:

— Subband coding.
— Wavelet coding.

110
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folng, o)

Interpolation

!

fy{n,, nyl ( aolny, ny) )

T

Interpolation
12(ny, ny! ( o.lny, 03 )
Interpolation

Figure 10.37 Laplacian pyramid gener-
ation. The base image fo(n1,. n,) can be

Y
( Lot 0,0 ) <,‘_‘ (n,, n’)> recoastructed from e(n,, ny) lor 0 s 1 <
— B K — 1 and f{n,, ny).




Figure 10.36 Exampie of the Gaussian prramid representauion {ormmage of 31
with K = 4

>
~
u
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b=
>
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The Gaussian pyvramid representation can be used in developing an approach
10 image coding. To code the original smage f,(11,. ni-). we code f,(n.. n:) and the
difierence berween f(n,. n.) and a prediction of f(n,. .) from f{n, 1.} Suppose
we preaict f(n,. n-) bv interpolating f,(n.. ny). Denoung the interpotated image
by Sl n2). we find that the error signal e(n,. n.) coded is

eplny. nay = foliny. sy ~ 1 fi(n0n2)j (10,36
= folny. ) = filnyony)

where /(] is the spatialinterpolation operation  The interpolanon process expands
the support size of fy(n,. ny). and the support size of f/(n,. n.) 15 the same as
foln,. ns). One advantage of coding fi(n,. ny) and ey(n,. n.) rather than fo(n,. n) 18
that the coder us2d can be adapted 0 the charactenstics of f\(n,. n:) and e in,. 1.

Ii we do not quantze f,(n,, n.) and ey(n,. n.). from (10.48) f(n,. n.) can be recovered
exactly by

folry. na) = 1{fy(ny. n2)} = eo(ny. ma). (10.=7)

Inimage coding. /y(n,. ny) and ey(n,. n,) are quantized and the reconstructed image
So01,. )18 obtained from (10.47) bv

Jolny. ma) = 1[fy(n,. n3)]) + &o(n,. 12 (104

where fy(n,. n2) and &,(n,. n.) are quantized versions of f,(n,. n.) and ¢y(n,. ny).
1f we stop here. the structure of the coding method is identical to the two-channe!
coder we discussed in the previous section. The image f,(n,. 1) ¢an be viewed
as the subsampied iows component f, (n,. n.) and e,(n,. n,) can be viewed as 1he
highs componeri j, (1. 11:) in the system in Figure 10.31.

636 image Cocing  Chap. 10




Figure 10.38 Example of the Laplacian pyramid image representation with K = 4. The
onginal image used s the 513 x 513-pixel umage fo(n, n;) in Figure 10.36. ¢,(n,, n.) for
0=1:=x3and f(n,. n).

the difference of the two Gaussian functions. The difference of two Gaussians
can be modeled [Marr) approximately by the Laplacian of a2 Gaussian, hence the
name “Laplacian pyramid."”

From the above discussion, the pyramid coding method we discussed can be
viewed as an example of subband image coding. As we have stated briefly, in
subband image coding, an image is divided into different frequency bands and each
band is coded with its own coder. In the pyramid coding method we discussed.
the bandpass filtering operation is performed implicitly and the bandpass filters
are obtained heuristically. In a typica! subband image coder, the bandpass filters
are designed more theoretically [Vetterli; Woods and O'Neil).

Figure 10.39 illustrates the performance of an image coding system in which
fx(ny, ny) and e,(ny, n,) for 0 < i = K~ are coded with coders adapied 1o the
signal characteristics. Qualitatively, higher-level images have more vanance and
more bits/pixel are assigned. Fortunately, however, they are smaller in size. "Fig-
ure 10.39 shows an image coded at § biupixel. The original image used is the 513
X S$13-pixel image fo(n,, n,) in Figure 10.36. The bit rate of less than 1 bitpixel
was possible in this example by entropy coding and by exploiting the observation
that most pixels of the 513 x 513-pixel tmage eq(ny, n,) are quantized to z¢€r0.

One major advantage of the pyramid-based coding method we discussed
above is its suitability for progressive data transmission. By first sending the top-
level image fy(n,. n:) and interpolating it at the receiver, we have a very blurred
image. We then transmit ex.(n;, n,) to reconstruct fe_,(n,, #.), which has 2
higher spatia} resolution than fx(n), n;). As we repeat the process. the recon-
structed tmage at the receiver will have successively higher spatial resojution. In
some applications, it may be possible to stop the transmission before we fully

Sec.10.3 Waveform Coding 639



Figure 10.3% Example of 1he Laplacian
pytamid image coding with K = 4 a
o i bivpinel. The ongmal 1mage used 16
; /_‘ 5 the 513 x S13-pixel imaee fin,. n:) 10
. X Figure 10.36.

recover the base level image f,(i,. n,). For example, we mav be able to judge
from a blurred image that the image is not whar we want. Fortunatelv. the images
are transmitted from the top 1o the base of the pvramid. The size of images
increases by approximately a factor of four as we go down each level of the pyramid
In addition to image coding. the Laplacian pyramid can also be used in other
applications. For example. as we discussed above. the result of repentive inter-
polation of ¢,(n,. nn,) such that its size is the same as that of f,(n,. n.) can be viewed
as approximately the result of filtering fo(n,. n,) with the Laplacian of a Gaussian.
As we discussed in Section 8.3.3. zero-crossing points of the result of filtering

fo(ny. n») with the Laplacian of a Gaussian are the edge points in the edge detection
method by Marr and Hildreth.

10.3.6 Adaptive Coding and Vector Quantization

The waveform coding techniques discussed in previous sections ¢an be modified
10 adapt to changing local image characteristics. In a PCM svstem. the recon-
struction levels can be chosen adaptively. In a DM system. the step size A can
be chosen adaprively, In regions where the intensity varies slowly. for example.
A can be chosen to be small to reduce granular noise. Inregions where the intensity
increases or decreases rapidty. A can be chosen to be large to reduce the slope
overload distortion problem. In a DPCM system, the prediction coefficients and
the reconstruction levels can be chosen adaptively. Reconstruction levels can also
be chosen adaptively in a two-channel coder and 2 pyramid coder. The number
of bits assigned to each pixel can also be chosen adaptively in all the waveform
coders we discussed. In regions where the quantized signal varies very slowly. for
example. we may want to assign a smaller number of bitg/pixel. It 15 also possible
to have a fixed number of bits/frame. while the bit rate vanes at a pixel level.

In adaptive coding, the parameters in the coder are adapted based on some

640 Image Coding Chap. 10
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Subband Coding

= HO ¢2___>_,T\2 GO
X(n)L .

K() = 31Hy(©)Gy(0) + H,(0)G,(@)]X(0) +

[Hy(o + S)GO((D) + H{(0+71)G(0)] X(®+ )

DN —

Consider QMF Filters:
Hy(®) = Gy(-0) = F(o)

H,(0) = G,(-0) = ¢°F(- ® + 1)

— X(®) = 2[F(0)F(-0) + F(- 0 + 1) F(0 + )] 1/

DO | =

IMPOSE:  |F(0)|* + |F(w+m)|” = 2

— X(0) = X(0w) — Perfect Reconstruction



Filter Design:

e QMF filters:

hy(n) = (-1)"h (N -1-n)
N = # of taps
e Johnston’s filter coefficients
ho(N—=1-n) = hy(n)

NPR

———= symetric
8 tap Johnston filters:

h (0) = h(7) = 0.00938
h (1) = h(6) = 0.06942

h(2) = h(5) = -0.07065
h(3) = h(4) = 0.489980



Filter Design

e (Cannot have linear phase FIR filters
for QMF condition except for trivial
2 tqp flter

——— amplitude distortion

e Well known filters
Hy(w) = A(w) Gy(w) = B(w)

H (o) = eij(go+n)
G, (0) = e /A0 +1)

a(n) = [1,2,1]
b(n) = [-1,2,6,2,-1]

— simple to implement

proposed by LeGall



Filter Design:

* Smith and Barnwell

h(0) = 0.03489

h(1) = -0.0109
h(2) = -0.0628
h(3) = 0.2239

h(4) = 0.55685
h(5) = 0.35797
h(6) = -0.0239
h(7) = -0.0759



Bit Allocation in Subband Coding:

R = Average # of bits per sample

Ry = Average # of bits per sample of subband K

M = # of subbands

Oy = variance of coefficients in subband K:
1 02
K
M

M-,
1T (og)
K=1



2D Subband Coding
e Separable ----- > FEasy to immplement

e Nonseparable

Separable subband Coding:

—=— H,y
Hox
Hy
X(”p nz) —
——— H,y
H, x
H,y

Analysis



FREQUENCY DOMAIN

highpass




Wavelets

)+ A special kind of Subband Transform

« Historically developed independent of
subband coding

HO
Hy—) 2
Hy=—| 2 Hyr
X(n)— Hy—=, 2
Hy— 2
< /
/ \(nalysis
H.H, X(w)
Designed
specially to
be Wavelet
Decomposition
—24 3102 1




Famous Wavelet Filters

2 e Daubechies

e Haar

e Coiflet

4 Tap Daubechies I.ow Pass

h(0) = 0.4829
A(1) = 0.8365
h(2) = 0.22414
h(3) = —0.1294



Fractal Compression

e Founders: Manderb}othand Barnsley.

e Basic 1dea: fixed point transformation

X, 1s fixed point of function f if
f (Xo) = Xo

e Example: Transformation ax +b
has a fixed point X, given by:

Xy = aXy+b

* To transmit X,, send a,b

Then iterate:

n+1)

Xé = aXén)er

will converge regardless of 1nitial
guess.



Image Compression

Think of Image I as array of numbers

Find a function f such that

fi) =1

If # of bits to transmit f 1s smaller

than I, achieve Compression

e In practice, hard to come up with one

transformation f, for the whole image.

 Divide up the image into domain and

domain and Range blocks



Image Compression

)
- Main idea:
- Divide up image into M x M
“Range” blocks
- For each Range block find
another 2 M x2 M
“Domain block” from
the same image such that for some
- transformation f, we

get fx(Dg) = Ry

Dy = Domain block k
R, = Range block k

» First publicly discussed by
Jacquin 1n 1989 thesis + 1992 paper

e Works well if there 1s self
similarity in image.



Domain

e What should f, do?

- change size of domain block
- change orientation of domain block
- change intensity of pixels

* fg consists of

- geometric transformation : gg

- massic transformation : My

ty

« g, . displacement + size + intens

* My @ Orientation +-iakeRstty-



Transformations:

b

* gx . displaces + adjusts intensity
easy

* My mK(rlj) = i(ocKzij+AK)

I can be

* Rotation by 90, 180, -90

* Reflection about

horizontal, vertical, diagonal
) * 1dentity map

e Finding transformations 1is
compute 1intensive

e Search through all domain
blocks + all transformations to

find “BEST” one

* Encoding more time than decoding



o If Image is divided mito

D
N Range blocks —— N

transformations  f k=1,...N

are 1ts representation.
f = Lk)f I

1= f()

Za

[ 1s approximation to I.
e Collage theorem guarantees convergence

to [ wusing any arbitrary initial

guess for image.
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The first six iterations of the fractal decoding process.
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VECTOR QUANTIZATION

e Let f denote N dimensional vectors constisitng
of N real valued, continuous amplitude scalars.

¢ Basic Idea: Map finto L possible N dimen-
sional reconstruction vectors 7; for 1 <7 < L.

A
— - —

f=VQo(lf) =rn feCl;

e Define a distortion measure;

”~
— —

D = E[(f - P/T(F - F)
L ~ -
= % Jreo (i~ Fo)df:

.H;nn 1.8 Exampie of vector quantization. The number of scalarx ia the vector
1 2, and tbe number of reconstruction kevels is 9.

82
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Properties of Vector Quantization

e Removes linear dependency between random
variables.

e Removes nonlinear dependency between ran-
dom variables.

e Explits increase in dimensionality.

e Allows us to code a scalar with less than one
bit.

¢ Computational and storage requirements are
far greater than scalar quantization.

83
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VQ Removes Linear Dependency

e Linear transformation can decorrelate linearly
dependent (correlated) random variables.

q
‘T

Pt =
20

Ni-
——

{vl

Figure 1.9 Ilustration that vector quantization can expoit linear dependence of 7’ q‘b
scalars in Lhe vector. (a) Probability density function pp 5(f}, f3): (b) reconstrction }

Jeveks (filled-in dots) in scalar quantization; (c) reconttruction levels (filked-in dots)
1 vector quantization,

Figure 16.18 Resuit of climinating lineas
dependence of the two scalans /) and J,
i Figure 10.9 by linear trantformaiiog

of fy and f,.
Q27




VQ Removes Nonlinear Dependency

e Nonlinear dependence cannot be eliminated by
a linear operator.

5 n
A 4

2

AsTorTrom

-2

(bl {c)

Figure 10.11 [lustration that vecior quantization can exploil nontincar depend-
ence of scatars in the vecior. (a) Probability dentity function p,, 4(f1. f3): (b)
reconsiruction levels (solid dows) in scalar quantization; (¢) reconsiruction levels
(solid dots) in vector quantization.
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VQ Exploits the Increase in Dimensionality

e The mean square error due to VQ is approxi-
mately less than 4 percent than scalar quanti-
zation. lmﬂﬂ em## rgmsﬂw'h’m /Mrf-‘zsw

# o Rece 625

/.5 1} Jovw v

~ m’.w S(afw a. ol

[ ] o e .—l
e lole . o
[ 4 [ ] ® e
® o fofae
(a)
f

W S84, MEE .

T -5 Ca,lﬂur

= qg-o'—fb—;‘fs P,&
withv® - L]

Io—ékw{ ’0-4 ?0’

Vb ¥

(b)

" stalar gealal

Figwre 10.13  Nlustration that vector
q_uml@uu‘on can exploil the dimen- 3(
wonality increase. In this case, the mean b\
square ervor due to vector quantization i &' Y" 4
approximately 4% less than that due (o \] " o ~
scalar quantization. (a) Scalar quantiza- ?5 I
vob of £, and f,: (b} vector Quantizalion

; of f, and f,.
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Codebook Design Algorithms

—

e K-means algorithm.
o Tree codebooks and binary search.

e Nearest neighbor.

87
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_ Codebook Design via K-means

e Fxploit the following two necessary conditions
for the optimal solution:

— For a vector fﬂ to be quantized to one of
the reconstruction levels, the optimal quan-
tizer must choose the reconstruction level 7; 179 4L
which has the samllest distortion between f.
and 7. 15 o dE dd Ay L
— Fach reconstruction level 7; must minimize
the average distortion D in Cj.

Minimize E[d(f,7) | feC] wrt 7

¢ Find 7; and C iteratively — Problem: local
versus global minimum — initial guess impor-

tant. el codetark vactors

|

Clayification of M raining vecton
0 L clustery by quaatation

Estimation of 7, by computing
amtroid of the vecton withi]
oach closter o

Figure 18.14 Codebook dexign by the

K- algorithm f :
Codebook dmigrad: Lstof 7, bioa, oo quanda-



Complexity of K-means

e M training vectors, L codewords, N dimensional,
R bits per scalar.

e Complexity of Codebook design:

— M L evaluation of distortion measure for each
- S ?Q/ > iteration.
— MLN = NM2¥R additions and mults per
iteratron.
. — Example: N= 10, R=2 , M = 10L results in
D 100 trillion operation per iteration.

- Storagei MN for training vectors, LN for re-
construction levels —» (M + EJI_V_R)N. -

’”"

e Complexity of operation at the receiver.

T\’( W T C ;.‘I { )

_ Storage of reconstruction levels: N2VR. If
N =10 and R = 2, storage is 10 million.

e
— Number of artithemetic operations N2V£&. If

N =10 and R = 2, 10 million operations per
look up.

89
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Iree Codebook and Binary Search

e Full search is responsible for exponential growth

of the number of operations at the veeeiwer —
Tree codebook. Toamthr .

e Let L be a power of 2.
e Basic operation of tree codebook design:
— Use K-means to divide the N dimensional

space of f into two regions.

— Divide each of the two regions into two more
regions using the K-means algorithm.

— Repeat step 2 until there are L reconstruc-
tion levels.

Figure 10,15 Ertample of 1 tree code-
book.

T
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M= # o Ty Veelors
L - ¥ 0/ CQ-W"‘C*\

N -1 ’)ooms'.h
Complex1ty of Tree Codebook

Ta \,_As.v-

o ol ol 2.

¢ Design compleicity:

— Number of arlthm tic operations per itera-
tion is 2V M log, L For N =10 and R = 2,
the reduction™factor compared to the full
search 1s 26, 000.

— Storage: approximately the same as full search

algouthm T e e NPT /«/u/;« Sl onlen)

Tuw/(

e Operation complexity at reeetver

— Number of arithmetic operations Is 2N?R. =2 I’y
For N =10 and R = 2, the reduction factor
compared to the full search is 26, 000.

— Storage: The codebook must store all the
intermediate reconstruction levels as well as
the final reconstruction levels. — Twice as
much storage needed as full search.

e Distortion of full search is slightly smaller than
that of tree search.

91
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| Nearest Neighbor Design Algorithm

e Initially proposed by Equitz.

e computational complexity grows linearly with
the training set.

e Find the 2 vectors closest to each other, merge
them into another vector equal to their mean,
repeat this process until the number of vectors
is L.

e Main efficiency is achieved by partitioning the
training datainto a K-D tree — multiple merges
at each iteration.
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Variations of VQ

o Multistage VQ reduces storage and search time.

1. First stage a low rate VQ.

2. Generate error by subtracting the codeword
from the original.

3. Code the error by a different VQ.
4. Repeat steps 2 and 3.

T0 CHRANNEL

INDEX WOEx 2

€ODE .
VECTOR 2 .

Ve Z,_ Cs‘“

Fig. 5.5.2 Multistage Vecior Quantization, A( each siae ap error vector 1 computed

which is then used a5 the input to the pext suage of VQ. The decoder merely
computes I FUMmAon of Lbe code vectors corresponding to the received indices.

e Parameter extraction techniques:

— mean and variance of each input vector are
computed and sent separately.

— mean and variance might be coded with DPCM.

93
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Variations of VQ (cont’d)

—

e Block classification:

— Divide the blocks into several classes accord-
ing to spatial activity.
— Design a codebook for each class.
— Overhead on transmitting the codebook 1is
large.
e Combine prediction techniques with VQ:

— Coded quantity is the prediction error rather
than intensity values.

e V() of color images exploits the correlation be-
tween color components.

e Typical rates: .1 to .5 bits per pixel for 4 x 4
pixels as vectors.
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local measure. such as local image conirast. If the local measure used can be
obtained {rom previouslv coded pixel intensities. then it does not have to be trans-
mitted. If the local measure used is obtained directly from f(ny. n.). it must be
transmitted. since the receiver does not have access to the original image. Adaptive
coding certainly adds complexity to an image coder. but can ofien significantly
improve its performance.

PCM systems do not exploit the statistical dependence of neighborhood pixel
inmtensities.  One way to exploit the statistical dependence is to use methods such
as DM. DPCM. and wtwo-channel coders. where the difference between f(n,. n-)
and a prediction of f(xn,. n-) is coded. An alternate way is 1o use vector quanti-
zauon. As we discussed in Section 10.2. vector quantizanon can exploit thé sta-
usucal dependence of the parameters coded. Vector quantization has been con-
sidered in coding the waveform f(x,.n.). The blocks used consist of neighborhood
pixel intensities of a small size. tvpically 2 x 2.3 x 3. and 4 x 4. Vector
quantization has been primarilv applied in low bit rate (below 1 bii/pixel) appli-
cations. since the computational and storage ¢osts increase rapidly with the block
size and the bit rate. Intelligible images can be reconstructed with some sacrifice
in quality a1 bit rates below 1 biupixel. which is not possible with DM. DPCM. or
two-channel coders with scalar quantization and uniform-length codeword assign-
ment. For waveform coders. vector quantization is an effective way to code an
image at a bit rate lower than 1 bitpixel. Figure 10.40 illustrales the performance
of vector quantization when applied (o coding the waveform f{(n,. n.). Figure
10.401a} shows an original image of 512 x 512 pixels. Figure 10.40(b) shows the

(b)

Flgure 10.30 Example of animage coded by vector quantization. Courtesy of William Equitz.
(a) Onginal image of 512 x 512 pixels: (b) coded image by vector quantzation at i bicpixel
The block suze used 15 4 x 4 pixels and the codebook is designed by using a variation of the
K-means algonthm. NMSE = 2.7%. SNR = 15.7 dB.

Sec. 10.3  Waveform Coding
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