Filter Specs

Low pass filter

$H(\omega)$

1

1 - δ_p

δ_s

$\delta_p = $ passband ripple
$\delta_s = $ stopband ripple

0.01
0.001

ω_p
ω_s

passband
stopband

transition band
2D specs

low pass filter in 2D

Stop band

Pass band

$|H(w_1, w_2)| < 1$

$|H(w_1, w_2)| < \delta_2$

(w_1, w_2) outside C_S

(w_1, w_2) inside C_P

$1 - \delta_P < |H(w_1, w_2)| < 1$
3 ways of designing FIR Filters

1. Window: \(1D \rightarrow 2D\)
2. Frequency sampling: \(1D \rightarrow 2D\)
3. Design by transformation: McClellan

Window

1. Start with ideal freq. response \(H_0(w)\)
2. Take inverse DFT \(h(n) \rightarrow \text{sinc. filter} \rightarrow \text{IIR}\)
3. \(h(n) = W(n) \cdot h_0(n)\)
\[h(n) = W(n) \ast H_d(n) \]

\[\left| H_d(\omega) \right| \]

\[W(n) \ast H_d(n) \]

\[\text{Length of } W(n) \]

\[\text{shape } H(\omega) \]
\[H(\omega) = |H(\omega)| e^{j\phi(\omega)} \]

Zero phase \(\phi(\omega) \) is linear in \(\omega \) →

Linear phase \(\phi(\omega) \) is zero
If h is zero phase $Z \rightarrow h(z)$ is zero phase

If $W = 0$ then $W = 0$
\[w_a(t) = \begin{cases}
I_0 \left(\frac{\alpha \sqrt{1 - \left(\frac{t}{\Delta} \right)^2}}{I_0(x)} \right) & \text{if } t \leq \Delta \\
0 & \text{otherwise}
\end{cases} \]

duration \leq 2\Delta

\[\Delta = \text{Kurto } \text{Tractor off mainlobe width + } \text{sidelobe height} \]

\[I_0(x) = \text{modified 2nd order Bessel fn} \]

\[I_0(x) = \sum_{i=0}^{\infty} \frac{x^i}{2^i (i!)^2} \]

\[2^i \times i! \]
Continued time 2^b window.

$$W_a(t_1, t_2) = \begin{cases} \text{wa}(t) & \text{for discrete} \\ \text{(n,m)(ER)} & \text{otherwise} \end{cases}$$

Sample: 10

$$w(a, n_1) = s_{c(t_1, t_2)}$$

θ
\[W(n_1, n_2) = W_a(n_1) W_a(n_2) \]

Sampled version of \(W_a(t) \).

\[W(w_1, w_2) = W_a(w_1) W_b(w_2) \]
Another way 2D Windoors

Rotate \(\text{wa}(t) \) to get \(\text{wa}(t_1, t_2) \)

Sample \(\text{wa}(t_1, t_2) \) to get \(W(u_1, u_2) \)

\[
\text{wa}(t_1, t_2) = \text{wa}(t) \quad | \quad t = \sqrt{t_1^2 + t_2^2} \\
\text{wa}(t_1, t_2)
\]
\[W(n_1, n_2) = \begin{cases} \text{Circular symmetric window} & \text{otherwise} \\ \begin{cases} W(t_1, t_2) \mid t_1 = n_1 \\ t_2 = n_2 \end{cases} & 0 \end{cases} \]

Show pictures from J. Lim

4.5 \rightarrow 4.9
Freq. Sampling Theory

Sample 2D Fourier space on a MxM equally spaced points.

\[t \rightarrow u, \quad \text{IDFT} \rightarrow \text{MxM FIR filter} \]

Example: 4.10 \rightarrow 4.11
2D Filter Design using Transforma-

\[H(u, v) = \begin{bmatrix} H_1(u) & H_2(u) \\ H_3(u) & H_4(u) \end{bmatrix} \]

1. How to design \(H_1(u) \) and \(H_2(u) \)?
2. How to design \(H_3(u) \) and \(H_4(u) \)?

- Design of \(H_1(u) \) and \(H_4(u) \):
 \[H_1(u) = 20 \cos^2 \left(\frac{\pi u}{2} \right) \]
 \[H_4(u) = 20 \cos^2 \left(\frac{\pi v}{2} \right) \]

- Design of \(H_2(u) \) and \(H_3(u) \):
 \[H_2(u) = \frac{1}{2} \left(1 + \cos \left(\frac{\pi u}{2} \right) \right) \]
 \[H_3(u) = \frac{1}{2} \left(1 + \cos \left(\frac{\pi v}{2} \right) \right) \]
\[H(\omega) = H^*(\omega) \quad \Rightarrow \quad h(n) = h^*(-n) \]

Assume \(h(n) \) has real coeff.

\[\Rightarrow h(n) = h(-n) \]

Zero phase in 1D \[\quad \Rightarrow \quad h(n) = h(-n) \]

Assume \(H(\omega) \) is zero phase

\[h(n) = h(-n) \]

\[h(n) \text{ has } 2N+1 \text{ sample.} \]

\[
H(\omega) = \sum_{n=-N}^{N} h(n) e^{-j\omega n}
\]

\[\text{Zeropane } L = h(0) + \sum_{n=1}^{N} 2h(n) \cos(\omega n) \]
\[H(\omega) = \sum_{n=0}^{N} a(n) \cos(n \omega) \]

\[H(\omega) = \sum_{n=0}^{N} b(n) (\cos(\omega))^n \]

\[
\begin{align*}
\cos(2\omega) &= \cos(\omega + \omega) = 2 \cos^2 \omega - 1 \\
\cos(3\omega) &= \cos(\omega + 2\omega) = 2 \cos^2 \omega - \cos \omega \\
&= 2[\cos^2 \omega - \frac{(1+\cos^2 \omega)\cos \omega}{2}]
\end{align*}
\]

\[H(\omega_1,\omega_2) = \left[H(\omega) \right]_{\cos \omega = T(\omega_1,\omega_2)} \\
H(\omega_1,\omega_2) = \sum_{n=0}^{N} b(n) \left[T(\omega_1,\omega_2) \right]^n \]
Can show: if \(T(w_1, w_2) \) is zero plane and \(H(w) \) is zero plane

Then \(\rightarrow \) \(H(w_1, w_2) \) will be zero plane.

Suppose \(T(w_1, w_2) \) is freq. response

\[
t(n_1, n_2) < (2M+1) \times (2M+1)
\]

\[
H(w) < 2N+1 \text{ point.}
\]

\[
T(w_1, w_2) = \sum_{n_1=-M}^{+M} \sum_{n_2=-M}^{+M} t(n_1, n_2) e^{-j\omega_1 n_1} e^{-j\omega_2 n_2}
\]
\[H(\omega_1, \omega_2) = \sum_{n=0}^{N} b(n) \left(\sum_{n_1=-M}^{+M} \sum_{n_2=-M}^{+M} t(n_1, n_2) e^{-j\omega_1 n_1} e^{-j\omega_2 n_2} \right) \]

\[H(\omega_1, \omega_2) = \sum_{n_1=-NM}^{+NM} \sum_{n_2=-NM}^{+NM} h(n_1, n_2) e^{-j\omega_1 n_1} e^{-j\omega_2 n_2} \]

\[(2NM+1) \times (2NM+1) \]

\[M=1 \rightarrow t(n_1, n_2) : 3 \times 3 \]

\[N=10 \rightarrow h(n) : 21 \times 1 \]
Steps for 2D Filter

Using Transformation

1. Start with specs in 2D
2. Either choose or design \(t(u_1, u_2) \)
3. Derive specs for \(H(w) \) from specs in 2D for \(H(u_1, u_2) \) and given \(t(u_1, u_2) \)

\[w_s, w_p, s_s, s_p \text{ for } H(w) \]

4. Design \(H(w) \) \(\rightarrow \) \(l(n) \) (optimal filter)

5. Combine \(l(n) \) and \(t(u_1, u_2) \) to get \(h(u_1, u_2) \)

\[h(u_1, u_2) + \begin{bmatrix} H(w) \\ L_n \\ T(w_1, w_0) \end{bmatrix} = \begin{bmatrix} H(w) \\ L_n \\ T(w_1, w_0) \end{bmatrix} \]

20
Figure 4.5 Fourier transform of (a) separable window and (b) circularly symmetric window obtained from the analog rectangular window with $\tau = 8$.
Figure 4.6 Support region of $w(n_1, n_2)$ for $\tau = 8$. (a) Separable window; (b) circularly symmetric window.
Figure 4.7 Fourier transform of circularly symmetric windows with $\tau = 8$. (a) Hamming window; (b) Kaiser window with $\alpha = 1$; (c) Kaiser window with $\alpha = 3$.
Figure 4.8 Frequency responses of lowpass filters designed by the window method. The desired impulse response was obtained by using (4.10a) with $R = 0.4\pi$. The 1-D Kaiser window was used. The support regions of the windows are those shown in Figure 4.6. Both perspective and contour plots are shown. (a) Separable window design; (b) rotated circularly symmetric window design.
Figure 4.9 Frequency responses of bandpass filters designed by the window method. The desired impulse response was obtained by using (4.10c) with $R_1 = 0.3\pi$ and $R_2 = 0.7\pi$. The 1-D Kaiser window was used. The support regions of the windows are those shown in Figure 4.6. Both perspective and contour plots are shown. (a) Separable window design; (b) rotated circularly symmetric window design.
Figure 4.9 (continued)
Figure 4.10 Example of a 15×15-point lowpass filter designed by the frequency sampling method. (a) Passband (filled-in dots), transition band (marked by “x”), and stopband (open dots) samples used in the design; (b) perspective plot of the filter frequency response; (c) contour plot of the filter frequency response.
Figure 4.10 (continued)
Figure 4.11 Example of a 15×15-point bandpass filter designed by the frequency sampling method. Transition regions used in the design are from 0.3π to 0.4π and from 0.7π to 0.8π. (a) Perspective plot of the filter frequency response; (b) contour plot of the filter frequency response.