MULTI-Resolution Expansion

- Scaling fn \(\Phi \): create a series of approximations of a fn each differing by a factor of 2 in resolution

- Function \(\Phi \): (wavelet) encoder diff between adjacent approximations.

Series Expansion

Expand fn \(f(x) \) as:

\[
 f(x) = \sum_{k} d_k \Phi_k(x)
\]

\(\Phi_k(x) \equiv \text{real valued expansion functions} \)

\(d_k \equiv \text{coefficients} \)
If expansion unique i.e. only one set of \(a_k \) for \(f(x) \)

\[\Rightarrow \phi_k = \text{basis function}. \quad \{ \phi_k \} = \text{basis for class of fun.} \]

Function space: \(V = \text{Span} \{ \phi_k(x) \} \) closed span of expansion set

\(f(x) \in V \implies f(x) \) is in closed span of \(\{ \phi_k(x) \} \)

and can be written as \(f(x) = \sum_k a_k \phi_k(x) \)

Dual function \(\{ \tilde{\phi}_k(x) \} \) To \(\{ \phi_k(x) \} \)

\[a_k = \langle \tilde{\phi}_k(x), f(x) \rangle \]

Consider 3 cases:
(1) Expansion functions form an orthonormal basis for V:

\[
\langle \phi_j(x), \phi_k(x) \rangle = \delta_{jk} = \begin{cases}
0 & j \neq k \\
1 & j = k
\end{cases}
\]

\[\Rightarrow \phi_k(x) = \hat{\phi}_k(x) \text{ basis and dual same.}\]

\[\Rightarrow \alpha_k = \langle \phi_k(x), f(x) \rangle\]

(2) Expansion function orthogonal but not orthonormal

\[\langle \phi_j(x), \phi_k(x) \rangle = 0 \quad j \neq k\]

\[\Rightarrow \text{basis fn and dual are bi-orthogonal}\]

\[\alpha_k = \langle \hat{\phi}_k(x), f(x) \rangle\]

\[\langle \phi_j(x), \hat{\phi}_k(x) \rangle = \delta_{jk} = \begin{cases}
0 & j \neq k \\
1 & j = k
\end{cases}\]
3) More than one set of \(\phi_k \) in

\[
f(x) = \sum_k \alpha_k \phi_k(x)
\]

\[\Rightarrow \text{Exp fr & duals are "overcomplete" or "redundant"}
\]

Form a frame

\[
A \|f(x)\|^2 \leq \sum_k |\langle \phi_k(x), f(x) \rangle|^2 \leq B \|f(x)\|^2
\]

for \(A > 0, \ B < \infty \) \& \(f(x) \in V \)

- If \(A = B \rightarrow \text{Tight frame} \)

- Daubechies 1992 \(f(x) = \frac{1}{A} \sum_k \langle \phi_k(x), f(x) \rangle \phi_k(x) \)
Scaling functions

- Start with real, square integrable \(f \), \(\varphi(x) \)
- Build a set \(\varphi_{j,k}(x) = \frac{1}{2} \varphi(2x-k) \)
- \(j,k \in \mathbb{Z} \), \(\varphi(x) \in L^2(\mathbb{R}) \)

Denote subspace \(V_j \) :

\[
V_j = \text{span} \{ \varphi_{j,k}(x) \}
\]

Then if \(f(x) \in V_j \) \(\Rightarrow f(x) = \sum_k d_k \varphi_{j,k}(x) \)

Example Haar basis.

\[
\varphi(x) = \begin{cases}
1 & 0 < x < 1 \\
0 & \text{otherwise}
\end{cases}
\]

Show Fig 7.11 6 + W 3E

\(f(x) \in V_0 \Rightarrow f(x) \in V_1 \quad : \quad V_0 \subset V_1 \)
For Haar

1. Scaling fn is \(I \) to its integer translate (only for Haar)

2. \(V_0 \subset V_1 \subset V_2 \subset \ldots \)
 nesting of subspaces.
 if \(f(x) \in V_j \) then \(f(2x) \in V_{j+1} \)

3. Only fn common to all \(V_j \) is \(f(x) = \mathbf{0} \)

\[V_{-\infty} = \{ \mathbf{0} \} \]
Any function can be represented with arbitrary precision.

\[V_0 = \{ L^2(\mathbb{R}) \} \]

- Can write \(\Phi_{j,k} \) as a linear combination of \(\Phi_{j+1,k} \)

\[
\Phi_{j,k}(x) = \sum_n C_n \Phi_{j+1,n}(x)
\]

\[
\Phi_{j,k}(x) = \sum_n h_n \phi(n) 2^{j+1} 2^{j+1} \phi(2^j x - n)
\]

Set \(j = k = 0 \) \(\Rightarrow \Phi_{0,0} = \phi(x) \)

\[
\phi(x) = \sum_n h_n \phi(n) \sqrt{2} \phi(2x - n)
\]

\(\phi(x) \) can be built from admissible resolution copies of itself, i.e., from \(\phi(2x) \)

Expansion for \(V_j \) is linear sum of \(V_{j+1} \)

Fig 7.15f 6+10 7
FIGURE 7.11
Some Haar scaling functions.
Wavelet fun

- Span the difference between 2 adjacent subspaces V_j and V_{j+1}

$$V_2 = V_1 \oplus W_1 = V_0 \oplus W_0 \oplus W_1$$

$$U_2 = V_0 \oplus W_0$$

$$V_j \oplus W_j$$

- $\psi_{i,k}(x) = 2^{-j/2} \psi(2^{-j} x - k) \quad k \in \mathbb{Z}$

- $W_j = \text{Span} \left\{ \psi_{i,j,k}(x) \right\}$

- $V_{j+1} = V_j \oplus W_j$

- Union of spaces
- Orthogonal complement of \(V_j \) in \(V_{j+1} \) is \(W_j \)

\[
\Rightarrow \langle \phi_{j,k}, \psi_{j,l} \rangle = 0 \quad \forall j, k, l \in \mathbb{Z}
\]

\[
L^2(\mathbb{R}) = V_0 \oplus W_0 \oplus W_1 \oplus \ldots
\]

\[
= V_1 \oplus W_1 \oplus W_2 \oplus \ldots
\]

\[
= \ldots \oplus W_{-2} \oplus W_{-1} \oplus W_0 \oplus W_1 \oplus W_2 \oplus \ldots
\]

we need to deal with \(\phi \) only \(\psi \).

- If \(f \in V_0 \)

\[
f = \text{linear comb of scaling \(\phi \) in } V_0
\]

\[
+ \text{linear comb of wavelet from } W_0
\]
\[L^2(\mathbb{R}) = V_j \oplus W_j \oplus W_{j+1} \oplus \ldots \]

\[= V_0 \oplus W_0 \oplus W_1 \oplus W_2 \oplus \ldots \]

\[= V_5 \oplus W_6 \oplus W_7 \oplus W_8 \oplus \ldots \]

Theorem by Burnside

\[h\psi(n) = (-1)^n \quad h\phi(1-n) \]

\[\Rightarrow \text{from } \phi(x) \rightarrow h\phi \rightarrow h\psi \rightarrow \psi \]
For Haar

\[\psi(x) = \begin{cases}
1 & 0 \leq x < 0.5 \\
-1 & 0.5 \leq x < 1 \\
0 & \text{otherwise}
\end{cases} \]

Show Fig 7.14 \& w

Wavelet Series Expansion

Arbitrary \(j_0 \)

\[f(x) = \sum_{k} c_{j_0}(k) \phi_{j_0, k}(x) + \sum_{j=j_0}^{\infty} \sum_{k} d_{j}(k) \psi_{j, k}(x) \]

If \(\phi \) orthonormal on tight frame:

\[c_{j_0}(k) = \langle f(x), \phi_{j_0, k} \rangle = \int f(x) \phi_{j_0, k}(x) \, dx \]

\[d_{j}(k) = \langle f(x), \psi_{j, k} \psi (x) \rangle = \int f(x) \psi_{j, k}(x) \, dx \]
FIGURE 7.14
Haar wavelet functions in W_0 and W_1.

\(\psi(x) = \psi_{0,0}(x) \)

\(\psi_{0,2}(x) = \psi(x - 2) \)

\(\psi_{1,0}(x) = \sqrt{2} \psi(2x) \)

\(f(x) \in V_1 = V_0 \oplus W_0 \)

\(f_0(x) \in V_0 \)

\(f_0(x) \in W_0 \)
A wavelet series expansion of $y = x^2$ using Haar wavelets.
Show Fig 7.15

Discrete Wavelet Transform

So far dealt with \(f(x) \) \(x \) real.

Now deal with \(f(n) \) \(n \) integer \(\Rightarrow \) sequence not \(f(x) \).

Forward DWT coefficients for \(f(n) \), (assuming tight frame orthogonal)

\[
W_\phi (j_0, k) = \frac{1}{\sqrt{m}} \sum_{n} f(n) \phi_{j_0, k}(n)
\]

\[
W_\psi (j, k) = \frac{1}{\sqrt{m}} \sum_{n} f(n) \psi_{j, k}(n)
\]

\(j \geq j_0 \)

Then

\[
f(n) = \frac{1}{\sqrt{m}} \sum_{k} W_\phi (j_0, k) \phi_{j_0, k}(n) +
\]

\[
\frac{1}{\sqrt{m}} \sum_{j=j_0}^{\infty} \sum_{k} W_\psi (j, k) \psi_{j, k}(n)
\]
Continued Wavelet Transform

- Already discussed last time
\[
W_\psi(s, \tau) = \int_{-\infty}^{\infty} f(x) \psi_{s, \tau}(x) \, dx
\]

\[
\psi_{s, \tau}(x) = \frac{1}{s} \psi\left(\frac{x-\tau}{s}\right)
\]

\[s = \text{Scale} \quad \tau = \text{Translation}\]

Inverse Wavelet
\[
f(x) = \frac{1}{C_\psi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W_\psi(s, \tau) \psi_{s, \tau}(x) \, ds \, d\tau
\]

where
\[
C_\psi = \int_{-\infty}^{\infty} \left|\hat{\psi}(\mu)\right|^2 \, d\mu
\]

- Compression \(0 < s < 1 \)
- Dilation \(s > 1 \)

- Show Fig 7.16
FIGURE 7.16
The continuous wavelet transform (c and d) and Fourier spectrum (b) of a continuous 1-D function (a).
Fast Wavelet Transform

\[\Phi(x) = \sum_n h \Phi(n) \sqrt{2} \Phi(2x - n) \]

\[x \leftarrow \frac{j}{2} x - k \]

\[\Phi(2^j x - k) = \sum_n h \Phi(n) \sqrt{2} \Phi(2^j (2x - k) - n) \]

\[= \sum_m h \Phi(m - 2k) \sqrt{2} \Phi(2^{j+1} x - m) \]

Similarly

\[\Psi(2^j x - k) = \sum_m h \Psi(m - 2k) \sqrt{2} \Phi(2^{j+1} x - m) \]

Recall

\[d_j(k) = \int f(x) \frac{1}{2^j} \Psi(2^j x - k) \, dx \]

\[d_j(k) = \sum_m h \Psi(m - 2k) c_{j+1}(m) \]

Similarly

\[c_j(k) = \sum_m h \Phi(m - 2k) c_{j+1}(m) \]
\[C_j(k) \rightarrow W\psi(j_k) \{ \text{DWT} \}
\]

\[d_j(k) \rightarrow W\phi(j_k) \]

as \[f(x) \rightarrow f(2^m) \]

Then

\[W\psi(j_k) = \sum_{m} h\psi(m-2k) \left[W\phi(j+1)_m \right] \]

\[W\phi(j_k) = \sum_{m} h\phi(m-2k) W\phi(j+1)_m \]

\[\Rightarrow \begin{cases}
W\psi(j, k) = h\psi(-n) * W\phi(j+1)_n \\
W\phi(j, k) = h\phi(-n) * W\phi(j+1)_n
\end{cases} \]

\[h\psi(-n) \quad \text{and} \quad h\phi(-n) \]

Subband Analysis

Since Convolution

Can use FFT or other fast algorithm. See Fig. 7.18
FIGURE 7.10
(a) A two-stage or two-scale FWT analysis bank and (b) its frequency splitting characteristics.