CLASSICAL DESCRIPTION OF MR

- Odd # Protons/Neutrons have Nuclear Spin
 - Intrinsic Spin Property
 - Intrinsic Magnetic Moment

- Spinning Magnetic Dipoles

- Biological tissue mostly H in H₂O
 - Sometimes ³¹P, ¹³C, ⁵²Na (exotic)

- MR is about interactions with three fields:
 - \(B₀ \) - MAIN FIELD
 - Produces Polarization
 - \(B₁ \) - RF FIELD
 - Signal Production/Reception
 - \(G \) - Gradient Fields
 - Spatial Encoding

- Spins exhibit resonance at Larmor Frequency
 \(\omega = γ \cdot B₀ \)
 - Gyromagnetic Ratio

- \(γ \) depends on nucleus for PROTONS:
 \(\frac{γ}{MHz} = 4.257 \cdot kHz/γ \)

- Others:
 - \(^{31}P \) \(\frac{γ}{MHz} = 1.197 \cdot kHz/γ \)
 - \(^{13}C \) \(\frac{γ}{MHz} = 1.024 \cdot kHz/γ \)
 - \(^{15}N \) \(\frac{γ}{MHz} = -0.83 \cdot kHz/γ \) Negative!
TYPICAL B_0'S

- 0.1 T 4.2 MHz VERY LOW!
- 0.5 T 2.1 MHz BASE (Permanent Magnetic)
- 1 T 4.2 MHz MILD (Superconducting)
- 1.5 T 6.3 MHz "HIGH" Diagnostic
- 2 T 12 MHz "HIGH" MRI Quality
- 4 T 120 MHz RARE (Reconceived/Prototype)
- 7/9.5 T

VEERY HIGH RESEARCH ONLY!

FOR SPECTRAL/SPATIAL LOCALIZATION
WE REQUIRE HOMOGENEITY

B_0 ~ 4 ppm 40 cm FOV
64 Hz @ 1.5 T
PRETTY REMARKABLE!!

WHY RESONANCE?

B

\Rightarrow TORQUE, BUT NO RESONANCE.

\Rightarrow MISSING BAR MAGNET IS MISSING ANGULAR MOMENTUM.

LIKE A SPINNING TOP

GRAVITY
B_x - RF FIELD

CANT DIRECTLY DETECT M_0.

WHY? HUGE FIELD!

RESONANCE IS THE BIG DEAL...

B_0 IS DC SPIN RESONATE \Rightarrow DETECTION!

- SAMPLE RESONATES AT $\omega = \frac{1}{2} B_0$.

- APPLY ROTATING RF FIELD AT $\omega = B_0$ IN THE TRANSVERSE PLANE.

$B_x(t) = A e^{-i\omega t}$

- AT TIME $t = 0$

- AT TIME $t = \tau$.

HAS TO BE ON RESONANCE TO DO SOMETHING

ILLUSTRATE BY ROTATING A SPHERE

"LAB" FRAME

SURFACE OF A SPHERE

"LAB" FRAME

"LAB" FRAME

"LAB" FRAME

"LAB" FRAME

ROTATING FRAME @ ω.

- IN ROTATING FRAME: PRECESSION ABOUT B_0.

$\omega = \gamma B_0 = 4.257 \cdot 0.16 = 0.68 \text{ kHz}$

$0.367 \text{ ms} 90^\circ \Rightarrow \text{30 cm NMR}$

TYPICAL B_0'S 0.14 - 0.35 G.

DURATION 1 - 3 ms, LONG TIME AT 64Hz.

PEAK POWER 0.5 kW.

HEATING FROM THIS (SAR)
Magnitization Exhibits Relaxation:

\[T_1 \sim \text{Longitudinal} \rightarrow \text{2000 ms in Tissue} \]

\[T_2 \sim \text{Transverse} \rightarrow \text{300} \]

Main source of tissue contrast (more later)

\[M_0 \]

\[M_0(t) \]

\[M_0(t) = k \]

\[T_2 < T_1 \quad \text{Always} \]

B_0 Reception

Once excited, we can pick up signal

Alternating magnetic flux through loop produces EMF

(Faraday's Law \[\mathbf{E} = \mathbf{V} \times \mathbf{B} \])

FID: Free Induction Decay

This is what chemists use

Chemical shift \(\approx \text{1 ppm} \)

Want \(B_0 \) flatter.

(-) Body \(\rightarrow \text{Tiny Oscillators} \)

MRE: Image oscillators.
G - GRADIENT FIELDS

SPATIAL LOCALIZATION

B_0 has poor localization $\propto \text{length}^{-1}$.

Instead, code position in frequency

$$\omega(x) = 6 (B_0 + G_x x)$$

ω^2 = gradient in x

- Change in z component with x

$$G_z = \frac{\partial B_z}{\partial x}$$

(B_x, B_0 do not matter much in high field)

Typical

$$G = 1 - 10 \text{ G/cm}$$

$$= 10 - 100 \text{ mT/m}$$

$$= 42 - 42 \text{ kHz/cm}$$

Gradient waveforms in audio range

$$SR = 15 \text{ G/cm/ms}$$

Safety concern is

$$\frac{\partial B}{\partial t}$$

$$\left(\frac{\partial B_z(B)}{\partial t} \right) x$$

Peripheral nerve stimulation

Big amps: 1000 volts 300 amps

Gradients do not satisfy Maxwell eqn.

Not an issue in high field

Z-graded coil
B_a - RF FIELD ± 10 V. Accuracy

- Magnetization processes around rotating field and is tipped away
- Very small field $\theta (\text{max} \ 0.3 \text{rad})$
- Resonance is essential
 - Easy to describe in rotating frame

Relaxation
- Longitudinal T_1
- Transverse T_2

Reception
- EMF $E = \frac{\Delta \phi}{\Delta t}$

FID

- 10 V. Accuracy leads to different flips in space Δ

Gradient Fields

Encode position onto frequency

$G_x = \frac{\partial \phi}{\partial x}$

Small constant fields B_x, B_y do not contribute to precession since $< B_0$ and Δf

Accumulating

High field: 1.5T

Assume J_{CM}

$11.28 \Delta \phi = 15000 \Delta t \Rightarrow 1.033 \Rightarrow 14 \text{ Hz}$

For $G_x \approx 1 \text{ G}_\text{cm} \Rightarrow 0.42 \text{ kHz} = 0.01 \text{ cm}$

Shift of 0.03 (ppm)

For accuracy of 1 ppm need

$\frac{\Delta B_0}{B_0} \approx 0.42 \text{ kHz} \approx 6.5 \text{ ppm}$ Usually 1 ppm?

With $G = \frac{4 \Delta}{\text{G}_\text{cm}} \approx 26 \text{ ppm}$
GRADIENT FIELDS

Encode position onto frequency

\[G_x = \frac{\partial \phi}{\partial x} \]

Small constant fields Rx, Ry do not contribute to precision about B0 - ML oscillation

1973 Lauderber

"Zeugmatography" - clever!

Paul somewhat lazy (aka efficient) young prok at Stonybrook chemistry. Lots of measurements!

Measured

H H H different e situations

To speed things up, he put 2 test tubes and added linear gradient

He realized this was imaging!

EXAMPLE SQUARE RECT

\[
F(\max) \approx 52\text{vol}()
\]

\[
\mathcal{F}(m(x)) = \int_{-\infty}^{\infty} e^{-i\omega x} m(x) dx
\]

\[
 \approx \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\omega x} m(x) dx
\]

\[
 m(x) = \text{rect}(\cdot)
\]

\[
 F(\max) = 52\text{vol}()
\]
Inverse FT of baseband signal gives in-phase projection (almost).

In-phase projection:

\[s(t) = e^{j\omega_0 t} \mathcal{F} \{ m(t) \} \]

\[\mathcal{S}(\omega) \]

\[k_0(t) \]

\[\mathcal{K}(\omega) \]

Physical signal:

\[S_R(\omega) = \text{Re} \left\{ S_r(\omega) \right\} = A(\omega) \cos(\omega t + \phi(\omega)) = \text{Re} \left[A(\omega) \cos(\omega t) \cos(\Phi) + \sin(\Phi) \sin(\omega t) \right] \]

Baseband signal (analysis):

\[s(t) = S_r(t) e^{j\omega t} = A(t) e^{j\phi(t)} = i(t) + jQ(t) \]

Quadrature phase-sensitive detection:

\[S_0(t) = \begin{bmatrix} \cos(\omega t) & I(t) \\ \sin(\omega t) & Q(t) \end{bmatrix} \]

\[S(t) = \Re \left\{ S_0(t) \right\} = M_0 \text{ in Ref Frame} \]
SO FAR

1. PLACE SAMPLE IN B_0
 - M_z DEVELOPS $\approx ST_1$

2. EXCITE USING $B_1(t)$ TIP AWAY FROM t

3. INSTANTANEOUS PRECESSION OF M_y
 - PICK UP INDUCED EMF IN RF COIL

4. ENCODE POSITION IN FREQUENCY USING GRADIENTS
 $\Rightarrow 2D$ PROJECTION

5. HOW DO WE GET AN IMAGE?
 - SEVERAL KEY COMPONENTS:
 - SELECTIVE EXCITATION (DIMENSION REDUCTION)
 - STRUCTURAL ENCODING

6. LIMITATIONS!
 - GRADIENT STRENGTH + DURATION \rightarrow RESOLUTION
 \Rightarrow LIMITED

 - SIGNAL DECAY (T_2), FIELD INHOMOGENEITY (δ)
 - DIFFUSION

 TYPICAL RES: $<1\,\mu m$ for small animal scanners