LECTURE 05 1/31/12

CLASSICAL DESCRIPTION OF MR

- Odd # protons/neutrons have nuclear spin angular momentum

INTRINSIC ANGULAR MOMENTUM

INTRINSIC MAGNETIC MOMENT

- Spinning magnetic dipoles

- Biological tissue mostly \(^1\text{H}\) in H\(_2\)O
 - Sometimes \(^2\text{H}, ^3\text{C}, ^15\text{N}\) and \(^1\text{H}\) and \(^15\text{N}\)

- MR IS MOST INTERACTIONS WITH THREE FIELDS:

 - \(B_0\) - MAIN FIELD
 - \(\mathcal{H}\) - POLARIZATION
 - \(B_1\) - RF FIELD
 - SIGNAL PRODUCTION/RECEPTION
 - \(B\) - GRADIENT FIELDS
 - SPATIAL ENCODING

\(B_0\) - MAIN FIELD

- Produces polarization of sample \(M_s\)

- Spins exhibit resonance at Larmor frequency

\[\omega = \gamma B_0 \]

\(\gamma\) - Gyromagnetic ratio

\(\nu\) depends on nucleus

- For protons:

\[\frac{1}{\nu} = 4.857 \text{ MHz/}\text{G} \]

\[\gamma = 2\pi \times 4.257 \text{ kHz/}\text{G} \]

WORTH REMEMBERING

OTHERS:

- \(^{13}\text{C}\) \[\frac{1}{\nu} = 1.074 \text{ kHz/}\text{G} \]
- \(^{15}\text{N}\) \[\frac{1}{\nu} = 0.473 \text{ kHz/}\text{G} \]

TYPICAL \(B_0\)'s

- 0.1 T \(\approx 4.2\) MHz - VERY LOW!
- 0.5 T \(\approx 21\) MHz - LOW (Proton Magnetic Resonance)
- 1 T \(\approx 41\) MHz - MILD (Carbon-13 Nuclear Magnetic Resonance)
- 1.5 T \(\approx 63\) MHz - "HIGH" MAGNETIC
- 3 T \(\approx 186\) MHz - "HIGH" NMR
- 4 T \(\approx 255\) MHz - PRECISION NMR
- 7/9.4 T VERY HIGH RESEARCH ONLY!

FOR SPECTRAL/SPATIAL LOCALIZATION WE REQUIRE HOMOGENEITY

\[\Delta B_0 \leq \pm 1 \text{ ppm} \] 40 cm for

- 64 kHz @ 1.5 T

PRETTY REMARKABLE?

WHY RESONANCE?

- Torque, but no resonance.

- Bar magnet is missing angular momentum.

LIKE A SPINNING TOP

GRANITY
\[B_1 = \text{RF FIELD} \]

Can't directly detect M.

Why? Huge field?

Resonance is the big deal...

\[B_0 \text{ is DC spin resonates} \Rightarrow \text{detection} \]

\[\Rightarrow \text{Sample resonates at } \omega = \gamma B_0 \]

\[\Rightarrow \text{Apply rotating RF field at } \omega = 2\omega_0 \text{ in the transverse plane} \]

\[B_1(t) = Ae^{-\gamma t} \]

\[\text{At time } t = \frac{1}{\omega} \]

\[\text{At time } t = \frac{T}{2} \]

\[\text{Has to be on resonance to do something} \]

\[\text{Illustrate by rotating a string} \]

\[\text{Frame of reference} \]

\[\text{Rotating frame} \]

\[\text{In rotating frame: precession around } B_1 \]

\[\omega = \gamma B_1 = 4.257 \times 10^6 \text{ rad/s} \]

\[T_1 = 0.367 \text{ ms} \]

Typical \(B_1 \)'s 0.14-0.55 T

Duration 1-3 ms

Low time at base

Peak power 2 kW

HEATING FROM THIS (SAR)

\[T_1 < T_2 \]

\[\text{MAGNETIZATION EXHIBITS RELAXATION:} \]

\[T_2 \text{ - Longitudinal } \lambda_0 \rightarrow 3000 \text{ ms in tissue} \]

\[T_1 \text{ - Transverse } \lambda_0 \rightarrow 300 \]

Main source of tissue contrast (more later)

\[M_L \]

\[e \]

\[M_T \]

\[M_0 \]

\[T_2 < T_1 \] Always

\[B_2 \text{ RECEPTION} \]

\[\text{Once excited, we can pick up signal} \]

\[\text{Alternating magnetic flux through loop produces EMF (Faraday's Law } E = \frac{\partial}{} \]

\[V(t) \]

\[\text{This is what chemists use} \]

\[\text{Chemical shift } \sim 1 \text{ ppm} \]

\[\text{Want } B_1, \text{ flatter} \]

\[\Rightarrow \text{Body \rightarrow Tiny oscillators} \]

\[N_{MC} \text{ - Image oscillators}. \]
Gradient Fields

Spatial Localization

B_z has poor localization \(@ \text{high frequencies} \)

Instead, code position in frequency

\[\omega(x) = \gamma (B_x + B_z x) \]

\(x \)-gradient in \(x \)

\(\omega(x) = \frac{\partial B_z}{\partial x} \)

\((B_x, B_z) \text{ do not matter much in high field}\)

Peripheral Nerve Stimulation

Big Amps: 1000 Volts

200 Amps

Graduates do not satisfy Maxwell Eqn.

Not an issue in high field

B_1 - RF Field

- Precession precesses around rotating field and is tuned away
- Very small field \(\varphi (\text{and often}) \)
- Resonance is essential
- Easy to describe in rotating frame

Reception

- E x F = \(\frac{\partial F}{\partial t} \)

Relaxation

- Longitudinal \(T_1 \)
- Transverse \(T_2 \)

Gradient Fields

Encode position onto frequency

\[G_z = \frac{\partial B_z}{\partial x} \]

Small component fields \(B_x, B_y \) do not contribute to precession since \(\ll B_z \) and \(\omega \) oscillating

High Field: 1st

Assume \(\frac{3}{4} \)

\(\Delta B = \frac{B_r - B_i}{2} \)

\(15000 \cdot 0.033 = 505 \)

\(\Delta B = 14 \) Hz

For \(G_z \sim \frac{1}{4} \) cm \(\Rightarrow 0.42 \text{ kHz} \) per mm

Shear of 0.03 ppm

For accuracy of 1 ppm need

\[\frac{0.42}{13} \approx 0.4 \text{ Hz} \]

\[\approx 6.5 \text{ ppm} \] (usually 1 ppm)

With \(G = \frac{1 \text{ cm}}{2} \approx 2.6 \text{ ppm} \)
GRAVITÉ FIELDS

encode position onto frequency

\[G \xrightarrow{\text{obs.}} \frac{\text{dx}}{\text{dx}} \]

(smaller constant field does not contribute to precision, rough estimate)

ANEMOTHER

"Deoxograpy" - clever!

Paul Sommertag (name not clear) makes precise stoichiometric chemistry.
Uses of measurements:

MEASURED

\[\text{H} - \text{C} - \text{C} - \text{O} - \text{H} \]

\(H \text{H} \) is different "endo-

To speed things up, he put a test tube and added linear gradient

\[\text{H} \text{H} \]

HE REMARKED THIS WAS IMAGINARY

EXAMPLE SQUARE RECT

\[s(t) = \int_{-\infty}^{\infty} e^{-i(\omega_0 + \delta \omega) t} \, dt \]

\[= e^{-i\omega_0 t} \int_{-\infty}^{\infty} e^{-i\delta \omega t} \, dt \]

\[= e^{-i\omega_0 t} \left[\frac{1}{\delta} \right] \]

\[\text{m}(t) = \text{rect}(\cdot) \]

\[f(t) \text{rect}(\cdot) \sim \text{square}(\cdot) \]

INVARIANTS TO SPECIFIC ISSUES: COMPLEX VALUE REPRESENTATION

For analysis, it is convenient to represent \(M_x, M_y \) as a complex number.

RECEIVED SIGNAL (complex):

\[S_x(t) = R \{ f(t) \} e^{-i \delta \omega t} \]

PHYSICAL SIGNAL:

\[S_y(t) = \text{Re} \left\{ S_x(t) \right\} = \text{Re} \left\{ A(t) e^{i \delta \omega t} \right\} \]

\[= \text{Re} \left\{ \text{Re} \left\{ A(t) e^{i \frac{\delta \omega t}{2}} \right\} \cos \left\{ \frac{\delta \omega t}{2} \right\} \right\} \cos \left\{ \frac{\delta \omega t}{2} \right\} \]

\[\text{in phase} \]

\[\text{Q(t)} \]

\[\text{quadrature} \]

Baseband SIGNAL (analytic):

\[s(t) = s_x(t) e^{-i\delta \omega t} = A(t) e^{-i\delta \omega t} \]

\[= s(t) + i Q(t) \]

QUADRATURE PHASE-SENSITIVE DETECTION:

\[s_y(t) = \left[\begin{array}{c} \text{I(t)} \\ \text{Q(t)} \end{array} \right] \]

\[\Rightarrow s_y(t) = i \text{I(t)} + Q(t) \]

\[\text{Re} \{ s_y(t) \} \rightarrow M_x \text{ in Rf Frame} \]
So far:

1. Place sample in \(B_0 \)
 - \(M \) develops \(-ST \)

2. Excite using \(B_x \) (Tip away from \(Z \))

3. Instantaneous precession of \(M \)
 - Pick up induced EMF in RF coil

4. Encode position in frequency using gradients
 - 1D projection

Q. How do we get an image?

Several key components:

10. Selective excitation (Dimension reduction)

11. Spatial encoding

3. Limitations:
 - Contrast + duration \(\rightarrow \) Resolution

 Limited, signal decay \((T_2) \), field enhancement \((T_1) \)

 Diffusion

 Typical res: \(1 \text{mm} \)
 - 30-50 \(\mu \text{m} \) small anat. features