Followup on Homework

- Gradient non-Linearities

![Graph showing actual gradient and linear model](image1)

Followup on Last time

- Magnetization:

\[M_0 = \frac{N \gamma^2 \hbar^2 I_z (I_z + 1) B_0}{3kT} \]

where:
- \(M_0 \) is the magnetization
- \(N \) is the number of spins
- \(\gamma \) is the gyromagnetic ratio
- \(\hbar \) is the reduced Planck constant
- \(I_z \) is the spin quantum number
- \(B_0 \) is the magnetic field strength
- \(k \) is the Boltzmann constant
- \(T \) is the temperature

The graph shows the relationship between position and frequency, with linear and quadratic components.

Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR

![Graph showing signal-to-noise ratio](image2)

The polarization of nuclei and electrons is shown, with a peak at 3.35T (~1.2K) for polarization transfer from electrons to nuclei.

Slide: Simon Hu, UCSF
Precession

• Recall from Last time:

\[\vec{S} + \vec{\mu} + \vec{B} \Rightarrow \text{Precession} \]

Solution: \(\omega = \gamma |\vec{B}| \)

\[\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B} \]

Mathematical Description of MRI

• Three Elements:
 - Precession about \(\vec{B} \) (all fields)
 - Transverse decay
 - Longitudinal recovery

Principles of MRI

EE225E / BIO265

Lecture 09

Instructor: Miki Lustig
UC Berkeley, EECS

Mathematical Description of MRI

• Plan:
 1) Derive Math for each element
 2) Put together: e.g., the BLOCH equation
 3) Solve the Bloch eqn. for special cases
 a) Excitation CH. 6 (later)
 b) Reception CH. 5 (first)
 i) Derive k-space (AGAIN!!!)
 ii) Pulse sequence
 iii) Sampling
Precession

• We apply fields: B_0, B_1, G

Precession

Magnetization is:

$$\vec{M} = [M_x, M_y, M_z]^T$$

• \vec{M} precesses around \vec{B}
• Frequency of rotation is
 $$\omega = \gamma |\vec{B}|$$
• Axis of rotation is $\vec{\Omega} \times \vec{B}$

Precession

• Described by cross product
 $$\frac{d\vec{M}}{dt} = -\gamma \vec{B} \times \vec{M}$$
• “-” Due to negative gyromagnetic ratio of protons
 or:
 $$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$
• B_0 Dominates! Hard to see other terms
Rotating Frame

- Change coordinates:
 \[[\hat{i}_r, \hat{j}_r, \hat{k}_r]^T = [\hat{i} \cos \omega_0 t, \hat{j} \sin \omega_0 t, \hat{k}]^T \]

- In the rotating frame at \(\omega_0 \):
 \[\hat{\mathbf{r}} = \begin{bmatrix} \hat{i} \cos \omega_0 t, \hat{j} \sin \omega_0 t, \hat{k} \end{bmatrix} \]

Examples

- Excitation
 \[\omega = \gamma |B_1| \]

- Precession
 \[\omega = \gamma |\vec{G} \cdot \hat{z}| \]

Examples

- For \(\omega_0 = \gamma B_0 \) MAIN FIELD GOES AWAY
 \[\vec{B}_{\text{rest}} = \vec{G} \cdot \hat{z} \hat{k}_r + B_{1z} \hat{i}_r + B_{1y} \hat{j}_r \]
 Much simpler!

- \(\vec{M}_{\text{rot}} \) precesses about \(\text{applied fields} \)
 \(\vec{G} \cdot \hat{z} \) and \(B_{1z}, B_{1y} \)
Relaxation

- **T2 Decay**
 - Transverse magnetization decays
 - Due to loss of coherence between spins
 - Also called spin-spin relaxation
 - Not a strong function of B_0
 - Dipole effect stronger in solids

Transverse Relaxation (T2)

- Let
 \[M_{xy} = M_x + iM_y \]

- Then
 \[\frac{dM_{xy}}{dt} = -\frac{1}{T_2} M_{xy} \]

Transverse Relaxation (T2)

- Solution:
 \[M_{xy}(t) = e^{-\frac{t}{T_2}} M_{xy}(0) \]

- Example: Brain @ 1.5T
 - white matter $T_2=92\text{ms}$, Density=0.65
 - gray matter $T_2=100\text{ms}$, Density = 0.75

 Excite, wait 100ms, collect data
T2 Example

Gray matter lighter

white matter darker

CSF Bright!

Magic Angle ~55 degrees

- Longer T2 due to dipole decoupling

Relaxation

- **T1 Recovery**
 - Longitudinal relaxation
 - Due to Spin-Lattice interaction
 - Thermal bouncing of molecules - lose cone of precession - align with field
 - Strong dependency on B_0, since energy level depends on B_0
 - B_0 strong - hard to transition - T1 long

T1 Recovery

- Bias towards up - stable anisotropic dist.
T1 Recovery

- Magnetization recovers to equilibrium M_0

$$\frac{dM_z}{dt} = -\frac{M_z - M_0}{T_1}$$

- Solution:

$$M_z(t) = M_0 + (M_z(0) - M_0)e^{-t/T_1}$$

M. Lustig, EECS UC Berkeley

T1 Recovery

After 90° pulse, $M_2 = 0$

$$M_2(t) = M_0 - M_0 e^{-\frac{t}{T_1}} = M_0 (1 - e^{-\frac{t}{T_1}})$$

Major source of contrast as well.

M. Lustig, EECS UC Berkeley

T1 Contrast

- Brain at 1.5T
 - Gray Matter T1 = 900ms
 - White Matter T1 = 800ms

Excite 90, wait, excite again, image....

M. Lustig, EECS UC Berkeley

T1 Contrast Example

Gray matter darker

white matter lighter

CSF Dark!

Fat Bright!

M. Lustig, EECS UC Berkeley
Relaxation

The Bloch Equation

- Combine Precession and relaxation

\[
\frac{d\vec{M}}{dt} = -\gamma \vec{B} \times \vec{M} - \frac{M_x \hat{i} + M_y \hat{j}}{T_2} - \frac{M_z - M_0 \hat{k}}{T_1}
\]

- Phenomenological: Fits observations
 - Describes most of MRI
 - Sometimes Fails.... J-coupling, Magn, transfer