Principles of MRI

EE225E / BIO265

Chapter 04 MR Physics

Instructor: Miki Lustig
UC Berkeley, EECS
Spin, Magnetic Moment and Magnetization

- Nuclei with Odd # protons/Neutrons posses spin angular momentum

\[S = \hbar \hat{I} \]

- Associated with S is a magnetic moment

\[\mu = \gamma \hat{S} = \gamma \hbar \hat{I} \]
Demonstration of Magnetic Resonance

https://www.youtube.com/watch?v=5r_aXiCKlhw
Spin, Magnetic Moment and Magnetization

- In a strong magnetic field B_0, spins align with B_0 giving a net magnetization
- Magnetic Moment is produced

$$M = \sum \mu$$
Energy

\[E = -\mathbf{\mu} \cdot \mathbf{B} = -\mu_B B_0 = -\hbar s_z B_0 \]

- Potential energy
- No reverse component

- \(s_z \) is quantized to \(\hbar I_z \Rightarrow I_z = \pm \frac{\ell}{2} \)

\[\Delta E = \frac{\Delta}{2\hbar} \hbar B_0 \]
Energy Splitting

- Zeeman splitting

 No field \Rightarrow singlet state

- Two populations μ_+ or μ_-

- Jump between states do to thermal energy

 $\frac{\mu_-}{\mu_+} = e^{-\frac{\Delta E}{kT}} \approx 0.999993$
Magnetization

- Magnetization:

\[M_0 = \frac{N \gamma^2 \hbar^2 I_z (I_z + 1) B_0}{3kT} \]
Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR

Jan H. Ardenkjær-Larsen*, Björn Fridlund, Andreas Gram, Georg Hansson, Lennart Hansson, Mathilde H. Lerche, Rolf Servin, Mikkel Thaning, and Klaes Golman

Amersham Health Research and Development AB, Medeon, SE-205 12 Malmö, Sweden

Communicated by Albert W. Overhauser, Purdue University, West Lafayette, IN, June 20, 2003 (received for review April 16, 2003)

PNAS September 2, 2003 vol. 100 no. 18 10158–10163

Slide: Simon Hu, UCSF

Solid material doped with unpaired electrons

P_e = 94% and P_C = 0.086%

Microwaves transfer the polarization from electrons to nuclei

3.35T, ~1.2K

electron

proton

carbon

Temperature (K)
https://www.youtube.com/watch?v=MzlDg-zT48c
Magnetism

• Most Objects Exhibit **induced magnetism**

\[M_{\text{induced}} = \mu_0^{-1} V \times B \]

- **magnetic permeability**
- **volume**
- **magnetic susceptibility**
- **magnetic field**

\[X > 0 \quad \text{Paramagnetism} \]
\[X < 0 \quad \text{Diamagnetism} \]
Magnetism

• Where does it come from?
 1. Circulation of electric currents
 2. Magnetic moment of electrons
 3. Magnetic moment of nuclei

\[1 + 2 >> 3\]
Magnetism

- (1) is explained by classical Physics

Contributes to Diamagnetism

Orbit Fluctuations
Magnetism

• (2) + (3) are intrinsic magnetism

\[\hat{\mu} = \gamma \hat{S} \]

\[|\gamma_e| >> |\gamma_p| \]

• Effect (2) cancels in most materials due to paired electrons (only exists in stable free radicals)
Magnetic Susceptibility

• Effect (1) is huge !!!
 – Macroscopically, it just changes the bulk magnetic field

\[\chi_{\text{water}} \approx -9 \cdot 10^{-6} \quad \chi_{\text{proton}} \approx 4 \cdot 10^{-9} \]

Diamagnetic Levitation example:
Quantitative Susceptibility

• Indirectly can be observed

*Tian Liu, Cornell (from Wikipedia)
Susceptibility Mapping

- Indirectly can be observed

http://mri.kennedykrieger.org/nationalresource/trd2.html
CHEMICAL SHIFT

But (1) has microscopic effect

\[B_{\text{eff}} = B_0 - B_{\text{ax}} = B_0 (1 - \alpha) \]

\[\omega_{\text{eff}} = \omega_0 (1 - \alpha) \]

\[\delta \rightarrow \text{CHEMICAL SHIFT} = \frac{\omega_2 - \omega_{\text{reference}}}{\omega_{\text{reference}}} \times 10^6 \]

For example:

ACETIC ACID \(\text{CH}_3\text{COOH} \)

Oxygen attracts electrons

Direction is

Historical
PRECESSION

\[\text{\(\mathbf{P} \times \mathbf{B} \)}\]

\(\text{FORCE} = \text{TORQUE} = \mathbf{P} \times \mathbf{B} \)

\(\text{TORQUE} = \frac{\partial \mathbf{S}}{\partial t} \)

\(\text{Change of Angular Momentum} \)

\(\mathbf{S} = \frac{d\mathbf{S}}{dt} = \mathbf{P} \times \mathbf{B} \Rightarrow \frac{d\mathbf{P}}{dt} = \mathbf{P} \times \mathbf{B} \)

\(\text{Volume}\)

\(\frac{d\mathbf{M}}{dt} = \mathbf{M} \times \mathbf{B} \)

\(\text{or} \)

\(\frac{d\mathbf{M}}{dt} = -\mathbf{B} \times \mathbf{M} \)

Solution for Precession
\(f = \frac{\partial}{\partial t} \mathbf{B}, \ \omega = \mathbf{B} \)

\(\frac{d\mathbf{M}}{dt} = \mathbf{M} \times \mathbf{B} \)

\(\text{Spatial Distribution}\)

\(\text{We have control!} \)
Mathematical Description of MRI

• Three Elements:
 – Precession about \tilde{B} (all fields)
 – Transverse decay
 – Longitudinal recovery
Precession

\[\vec{S} + \vec{\mu} + \vec{B} \Rightarrow \text{Precession} \]

\[\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B} \]

Solution: \(\omega = \gamma |B| \)
Mathematical Description of MRI

• Plan:
 1) Derive Math for each element
 2) Put together : e.g., the BLOCH equation
 3) Solve the Bloch eqn. for special cases
 a) Excitation CH. 6 (later)
 b) Reception CH. 5 (first)
 i) Derive k-space (AGAIN!!!)
 ii) Pulse sequence
 iii) Sampling
Precession

- We apply fields: B_0, B_1, G
Precession

• We apply fields: B_0, B_1, G

$$\vec{B} = B_0 \hat{k} + \nabla \cdot \vec{G} + B_{ax} (\cos \omega t \hat{i} - \sin \omega t \hat{j}) + B_{ay} (-\sin \omega t \hat{i} - \cos \omega t \hat{j})$$

\hat{i}, \hat{j}, \hat{k} are unit vectors

$$\vec{x} = [x, y, z]^T$$

$$\vec{G} = [Gx, Gy, Gz]^T$$
Precession

Magnetization is:
\[\vec{M} = [M_x, M_y, M_z]^T \]

- \(\vec{M} \) precesses around \(\vec{B} \)
- Frequency of rotation is \(\omega = \gamma |\vec{B}| \)
- Axis of rotation is \(\vec{n} = \frac{\vec{B}}{|\vec{B}|} \)

normal
Precession

\[\mathbf{B}_0 + \mathbf{G} = \mathbf{E} \]

\[B_{1r}(t) \quad \text{"small"} \]

\[\text{LAB FRAME} \]
Precession

- Described by cross product

\[\frac{d\vec{M}}{dt} = -\gamma \vec{B} \times \vec{M} \]

- "-" Due to negative gyromagnetic ratio of protons

or:

\[\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B} \]

- \(B_0 \) Dominates! Hard to see other terms
Rotating Frame

• Change coordinates:

\[[\hat{i}_r, \hat{j}_r, \hat{k}_r]^T = [i \cos \omega_0 t, j \sin \omega_0 t, k]^T \]

• In the rotating frame at \(w_0 \):
Rotating Frame

- Change coordinates:
 \[
 [\hat{i}_r, \hat{j}_r, \hat{k}_r]^T = [\hat{i} \cos \omega_0 t, \hat{j} \sin \omega_0 t, \hat{k}]^T
 \]

- In the rotating frame at \(w_0 \):
 \[
 \vec{B}_{\text{Rot}} = (B_0 - \frac{\omega_0}{\epsilon}) \hat{k}_r + \vec{G} \cdot \vec{\omega} \hat{k}_r + B_{1x} \hat{i}_r + B_{1y} \hat{j}_r
 \]

 And
 \[
 \left(\frac{d\vec{M}}{dt} \right)_{\text{Rot}} = -\gamma \vec{B}_{\text{Rot}} \times \vec{M}_{\text{Rot}}
 \]
Rotating Frame

- For $\omega = \gamma B_0$, MAIN FIELD GOES AWAY!

$$\vec{B}_{\text{rot}} = \vec{B} \cdot \hat{z} k_r + B_{\text{rot},x} \hat{x}_r + B_{\text{rot},y} \hat{j}_r$$

much simpler!

- \vec{M}_{rot} precesses about applied fields $\vec{B} \cdot \hat{z}$ and $B_{\text{rot},x}, B_{\text{rot},y}$
Examples

Excitation

\[\omega = \gamma |B_1| \]

Precession

\[\omega = \gamma |\overrightarrow{G} \cdot \overrightarrow{x}| \]
Examples

\[\omega = \nabla |B_1 + \frac{\gamma}{2} \mathbf{v} \times \mathbf{B}_1 | \]

- Gradient
- Total field

M. Lustig, EECS UC Berkeley
Relaxation

- **T2 Decay**
 - Transverse magnetization decays
 - Due to loss of coherence between spins
 - Also called spin-spin relaxation

- Not a strong function of B_0
- Dipole effect stronger in solids
Transverse Relaxation (T2)

• Let

\[M_{xy} = M_x + iM_y \]

• Then

\[\frac{dM_{xy}}{dt} = -\frac{1}{T_2} M_{xy} \]
Transverse Relaxation (T2)

- Solution:

\[M_{xy}(t) = e^{-\frac{t}{T_2}} M_{xy}(0) \]

Major source of contrast
Transverse Relaxation (T2)

- Example: Brain @ 1.5T
 - white matter T2=92ms, Density=0.65
 - gray matter T2=100ms, Density = 0.75

Excite, wait 100ms, collect data
T2 Example

Gray matter lighter

white matter darker

CSF Bright!
Magic Angle \(~55\) degrees

- Longer T2 due to dipole decoupling
Relaxation

• **T1 Recovery**
 – Longitudinal relaxation
 – Due to Spin-Lattice interaction
 – Thermal bouncing of molecules - lose cone of precession - align with field
 – Strong dependency on B_0, since energy level depends on B_0
 – B_0 strong - hard to transition - T1 long
• Bias towards up - stable anisotropic dist.
T1 Recovery

- Magnetization recovers to equilibrium M_0

\[
\frac{dM_z}{dt} = - \frac{M_z - M_0}{T_1}
\]

- Solution:

\[
M_z(t) = M_0 + (M_z(0) - M_0)e^{-t/T_1}
\]
T1 Recovery

After 90° pulse, \(M_z = 0 \)

\[
M_z(t) = M_0 - M_0 e^{-\frac{t}{T_1}} = M_0 (1 - e^{-\frac{t}{T_1}})
\]

Major source of contrast as well!
T1 Contrast

- Brain at 1.5T
 - Gray Matter T1 = 900ms
 - White Matter T1 = 800ms

Excite 90, wait, excite again, image....
T1 Contrast Example

Gray matter darker
white matter lighter
CSF Dark!
Fat Bright!
Relaxation
The Bloch Equation

• Combine Precession and relaxation

\[
\frac{d\vec{M}}{dt} = -\gamma \vec{B} \times \vec{M} - \frac{M_x \hat{i} + M_y \hat{j}}{T_2} - \frac{M_z - M_0}{T_1} \hat{k}
\]

• Phenomenological: Fits observations
 – Describes most of MRI
 – Sometimes Fails.... J-coupling, Magn, transfer