

Principles of MRI EE225E / BIO265

Chapter 07 Imaging Considerations

Next:

- Practical Issues in MRI
- T₂ decay
 - Map decay to k-space
 - result in artifacts
 - Image weighting
 - blurring in the readout
- Off-resonance

Effect of T2 Decay on Imaging

$$s(t) = \int_{\vec{R}} M_{xy}(\vec{r}, 0) e^{-\frac{t}{T_2}} e^{-i2\pi \vec{k}(t) \cdot \vec{r}} d\vec{r}$$

Signal decays along k-space trajectory

Effect of T2 Decay on Imaging

- Two Effects:
 - Signal Loss by e-TE/T2 (T2 Weighting)
 - Apodization by $e^{-\frac{k_x}{\frac{\gamma}{2\pi}G_xT_2}}$
 - Blurring in Image Domain (readout direction)
 - Usually minor effect
 - Reduced by increasing G_x

Point Spread Function

Effect of T2 Decay on Imaging

- Two effects:
 - Signal loss by exp(-TE/T₂) (T2 weighting)
 - Apodization causes blurring in readout

Off - Resonance

- So far, assumed B₀ constant. But B₀ varies due to:
 - Main field inhomogeneity (~ 1ppm)
 - Object magnetic susceptibility
 - Chemical shift

Main Field Inhomogeneity

- Magnet is designed to be homogeneous over a (spherical) volume
- Typical numbers:
 - Bare magnet ~10-100 ppm
 - Shimmed magnet ~1 ppm
 @3T 1ppm is 127Hz
- Generally, main magnet inhomogeneity is not a limitation

Object Susceptibility

- Most biological objects perturb the field $\Delta B_{z,\rm tissue}\approx \chi B_{0,\rm freespace}$
- $\boldsymbol{\cdot}\,\chi$ is the magnetic susceptibility
- Larmor frequency lower in tissue than air $\chi_{water} = -9.05$ ppm w.r.t free-space $\chi_{air} = 0.36$ ppm w.r.t free-space

for a sphere:

$$\Delta B_z = \frac{\Delta \chi B_0}{3} \left(\frac{a}{r}\right)^3 \left(3\cos^2\theta - 1\right)$$

John F. Schenck: Review article: Role of magnetic susceptibility in MRI

Object Susceptibility

- Complex behavior at boundaries.
 - Depends on $\Delta \chi$ and geometry
 - Typical $\Delta B0 \pm 3 \text{ ppm}$ (-12< χ < -6)

Macroscopic Effect

- Problem areas:
 - Brain above sinuses, auditory canals
 - Heart surrounded by lungs
 - Abdomen

Macroscopic Effects - Metal Artifacts

Macroscopic Effects - Metal Artifacts

metal artifact

corrected (SEMAC)

• χ_{titanium} =182

could be a project...

• Xstainless steal (nonmagnetic) = 3520-6700

Magn Reson Med. 2009 July ; 62(1): 66–76. doi:10.1002/mrm.21967.

Microscopic Effects

- Lungs:
 - -Approx: 1/6 tissue, 5/6 air
- Result:
 - Distribution of field/frequencies

AIL
 ⇒ WATER

-Tells a lot about microstructure of tissue

Blood

- +Water χ =-9.05
- +Hemoglobin molecule (deoxy) χ =0.15
- +Red Blood cells (deoxy) χ =-6.52
- *Deoxy blood χ =-8.77
- *Oxy blood χ =-9.05

*Magnetic Resonance in Medicine 68:863–867 (2012)

+ John F. Schenck: Review article: Role of magnetic susceptibility in MRI

Chemical Shift

 Protons in complex molecules are "shimmed" by adjacent spins and electrons

$$B_{\rm cs} = B_0(1-\sigma)$$

- σ is a shielding constant depends on molecular structure
- Example: Lipids

Chemical Shift

• Example: Lipids

Lipids from CH2 is 3.4ppm below water $@3T \approx 440 \text{ Hz}$

Heterogeneous Tissue

- Tissue is a combination of
 - Chemical shift
 - Susceptibility
 - Geometry
- Results are complex
 - Interesting cases:
 - Blood (fMRI)
 - Lungs
 - Trabecular bone
 - Iron in brain / liver

Effect on Imaging

- Magnitude
- Phase
- Geometric
- Blurring
- All depend on spatial scale we look at, and acquisition strategy

Off Resonance Effect on FID

- Simple spectroscopy experiment
 - With Susceptibility variation, FID is:

Off Resonance Effect on FID

• The field is:

$$B(\vec{r}) = B_0 + E(\vec{r})$$

uniform error-field

- Error is spatial and spectral
- In the rotating frame w₀

$$\vec{B} = E(\vec{r})\hat{k}$$
$$\omega_E(\vec{r}) = \gamma E(\vec{r})$$
$$f_E(\vec{r}) = \frac{\gamma}{2\pi} E(\vec{r})$$

Off Resonance Effect on FID

$$m_{x,y}(\vec{r},t) = m_{xy}(\vec{r},0)e^{-i\omega_E(\vec{r})t}e^{-\frac{t}{T^2(\vec{r})}t}$$

• Received signal is:

$$s(t) = \int_{\vec{R}} m_{xy}(\vec{r}, 0) e^{-i\omega_E(\vec{r})t} e^{-\frac{t}{T^2(\vec{r})}} d\vec{r}$$
magnetization dephasing relaxation

with time, phase dispersion causes signal cancellation and loss.

Off - Resonance Effects on FID

Off Resonance Effects on FID INHOMOGENIOUS DO KANDI ENTS STUAR FROM FUTIRE VOLUME

ff Resonance Effects on FID GANDIENTS ARE VERY STRONG ENNUMOGENE ITY! INHUMUGENEETY -> STUNALL LUSS KNOWN AS THE APPROX IN ATE AS EXPONENTIAL $S(b) = \int M_{any}(n_0) e^{-i\omega_e(R)t} e^{-t/T_e(R)} dR$ $\simeq \left[\int_{Vod GL} m_{e,y}(n,0) d\vec{r} \right] e^{-\frac{t}{T_{L}} S(n)}$ $\frac{1}{T_1} = \frac{1}{T_2} + \frac{1}{T_1}$ L Réyax PEPHASE $R^* = R_1 + R_1^{\gamma}$ M. Lustig, EECS UC Berkeley

Off Resonance Effects on FID

- T2*: Not a good model for Large-Scale variations (dephasing near sinuses)
- T2*: Is a good model for small scale distributed variations (dephasing near capilaries)

Twinkle Twinkle T2*

Twinkle, Twinkle, T₂*

T₂* ("tee-two-star"): time constant for the decay of signals measured by NMR

T₂* depends on . . .

random spin-spin interactions (which govern T₂)

 inhomogeneities in the magnetic field (which make T₂* shorter than T₂)

Example fMRI

Off -Resonance Effects on Imaging

neglecting T₂ and substituting for t:

$$m_{xy}(\vec{r},t) = m_{xy}(\vec{r},0)e^{-i\omega_E(\vec{r})\left(\frac{k_x(t)}{\frac{\gamma}{2\pi}G_x} + TE\right)}e^{-i2\pi k_x(t)x}d\vec{r}$$

Or,

$$m_{xy}(\vec{r},t) = m_{xy}(\vec{r},0)e^{-i\omega_E(\vec{r})TE}e^{-i2\pi k_x(t)\left(x + \frac{\omega_E(\vec{r})}{\gamma G_x}\right)}d\vec{r}$$

phase/dephasing

displacement

Off -Resonance Effects on Imaging

$$m_{xy}(\vec{r},t) = m_{xy}(\vec{r},0)e^{-i\omega_E(\vec{r})TE}e^{-i2\pi k_x(t)\left(x + \frac{\omega_E(\vec{r})}{\gamma G_x}\right)}d\vec{r}$$

phase/dephasing

displacement

An on-resonance spin at position:

$$x' = x + \frac{\omega_E(\vec{r})}{\gamma G_x}$$

Produces the same signal as a spin at x, with off-resonance!

Examples:

shape

readout direction?

Examples: Phase vs Echo Time

water and lipids in phase water and lipids out-of-phase

Example: Chemical Shift

$$x' = x + \frac{\omega_E(\vec{r})}{\gamma G_x}$$

Increasing G_x reduces chemical shift artifact

Example:

Let, $rac{\gamma}{2\pi}G_x=1~$ KHz/cm $E(\vec{r}) = 3 \text{ ppm}$ $\omega_E(\vec{r}) = 2\pi \cdot 200$ Hz $\Delta x = x' - x = \frac{\omega_E(\vec{r})}{\gamma G_r} = \frac{2\pi \cdot 200 \text{ Hz}}{2\pi \cdot 1 \text{ KHz/cm}} = 0.2 \text{cm}$ At: $\delta_x = 1 \text{ mm}$ this is a shift of two pixels!

Effects in Spin-Warp

- Off-Resonance
 - -Modest spatial distortions (few pixels)
 - -Relatively benign artifacts
 - -Reduce artifacts with large Gx
- Chemical-Shift
 - Fat shift of -220Hz @ 1.5T
 - Fat image is displaced from Water
 - In practice F/W shift limited to ~2pixels
 - 2 pixels shift are two cycles of linear phase across k-space $\frac{2~{\rm cyc}}{220~{\rm Hz}}\approx 9.1~{\rm ms}$

Off-Resonance in EPI Example: Lipids

phase accumulation

$0.44 \text{cyc} \leftarrow 1 \text{ms}$ $96ms \Rightarrow 42.24cyc$ $1 \text{ms} \Rightarrow 0.44 \text{cyc}$ 0.44cyc $\Leftarrow 1$ ms $1 \text{ms} \Rightarrow 0.44 \text{cyc}$

point-spread function

Off-Resonance in EPI

Off-Resonance in Spiral

phase accumulation

point-spread function

$$2 \text{ ms} \Rightarrow 0.88 \text{cyc}$$

Off-Resonance in Spiral

Readout time @3T:

Echoes

• Early in NMR people noticed the following odd behavior (Hann, 1950)

Two 90° excitations, separated by T cause large signal to form at 2T, Why?

Multi-Spin Echo - CPMG

Non uniform dephasing

• Any signal due to dephasing $\omega_{\rm E}(r)$ t is refocussed

T2^{*} Huge!

dephasing

but, constant

• If $\omega_{\rm E}(r,t)$ refocussing not perfect

shows as T₂

Low Flip Angle Spin Echoes

- Any pulse can produce a spin-echo
 - 180 maximally refocuses magnetization
 - Lower refocusing power with lower flip angle
 - 90 refocusses 1/2 (see homework)

Low Flip Angle Spin Echoes

- Refocusing RF result can be decomposed to several components:
 - Pass through
 - Refocused
 - Parasitic excitation
 - Magnetization stored in Mz

For 90 degrees:

$$M_{xy} = \frac{1}{2}\sin(\omega_E 2\tau)M_0 - i\sin^2(\omega_E \tau)M_0$$

In general.... I think

$$M_{xy} = \underbrace{A_1 \cos(2\omega_E \tau) + A_2 \sin(2\omega_E \tau)}_{\textbf{passthrough}} + \underbrace{B_1 \cos^2(\omega_E \tau) + B_2 \sin^2(\omega_E \tau)}_{\textbf{refocused}} + \underbrace{C_1 \cos(\omega_E \tau) + C_2 \sin(\omega_E \tau)}_{\textbf{parasitic}}$$
M. Lustig, EECS UC Berkeley

Phase Graphs

Useful to find echo formations

Phase Graphs

Extended Phase Graphs

- Each component has different magnitude and phase
- Echo consist of contribution from many pathways
- Can track to calculate magnitude & Phase of echo (Beyond scope... see document by Matthias Weigel)

Spin Echo Imaging

- Spin echo negates phase -- Conjugation
- How to incorporate in pulse sequence?

$$M_{xy}(\vec{r},t) = M_{xy}(\vec{r},0)e^{-i2\pi(k_x(t)x+k_y(t)y)}$$

Spin Echo Imaging

- Spin echo negates phase -- Conjugation
- How to incorporate in pulse sequence?

E(T) - (K, (T), k, 17) -R(7) K-SPALE GOES TO CONJUGATE POSITION.

MULTE-SLEUE

SIMPLE TA-WETCHTES SPIN-ECHU.

Fast/Turbo Spin-Echo (RARE)

Other non-idealities

- RF Inhomogeneity
 - -Affects Excitation
 - Spatially varying flip-angle
 - Spatially varying phase
 - Can cause problem for fat saturation
 - -Worse @ high field (wave effects)

-Affects receive

RF excitation inhomogeneity

AFFECTS RECEIVE : (-) VAREYING COMPLES SENSITZVITY $s(t) = \int c(\vec{x}, y) m(\vec{x}, y) e^{-i \pi t (\vec{k} \cdot \vec{r})} dr$

GOOD THENG: SENSITIVITY ENCOPENT. CAN BEA $5, (b) = \int m(\vec{x}_{1}) c_{1}(\vec{r}) e^{-i2\pi(\vec{x}_{2},\vec{r})} d\vec{r}$ $S_{2}(b) = \int m(F_{0}) C_{2}(F) e^{-i \partial T(F_{0})} dF$ TO RECONSTRUCT MC, & MC, need n encodings BUT TO RECONSTRUTET IN need (maybe) Bencodings. More later!

Gradient non-idealities

GRADIENTS

(-) Non Linearity - GraphENT ROLLES OFF

EASY TO CORNECT BY INTERPOLATION

₹ Z

- FOUT RESU

Concomitant Gradient (Maxwell Terms) (-) CONCOMITANT GRADIENTS IPEAL GRAPIENTS VIOLATE MAXWELL EON. FOR CY DINDRICAL COILS USED IN MRI B= B_+ 6_X+ 6, 4+ G_2 Z+ B_ (G_2 (X+ 4)+(G_2+G_1)Z-G_2 Z-G_2 moin grodients G= 40 mT/m B=1ST EXAMPLE: AT 3=20CM M. Lustig, EECS UC Berkeley

Concomitant Gradient (Maxwell Terms) (-) CONCOMITANT GRADIENTS IPEAL GRAPIENTS VIOLATE MAXWELL EDM. FOR CY USED IN MRI B= B_+ 6_X+ 6_y 4+ G_2 Z+ 13_0 [G_2 (X+y)+(G_2+G_1)Z-G_2 Z+G_2 Z+G_2 Z) moin grodients EXAMPLE: AT B= 20CM G= 40 mT/m B=15T $\frac{G_{x}^{2}z^{2}}{JB_{0}} = \frac{(40.10^{-3}.0.2)^{2}}{J.1.5} = 2.13.10^{-5}T = 14.2PPm$ 6= 10 mTh =) 0.989 ppm B. = 0.7T => 65.3 Mm, M. Lustig, EECS UC Berkeley

Gradient Finite Rise-Time FINITE RISE TIME 46/cm ideal -0.2 ms

Even finite-rise-time rate! (often ignored)

Eddy Currents

Generoled By ELECTRIC FRED FROM CHANGING MAGNETIC FLUX. BUTTO UP IN TIME VARYING GRAPIENTS AND DECAY IN CONSTANT & SLEW RATE GRADIENT ACTUAL GRADIENT SLEW EPPY WRAENTS M. Lustig, EECS UC Berkeley

Be(P,0) = b,10) + P. g(b) + ... +. BORE SOMEDNING Rh KERSON

M. Lustig, EECS UC Berkeley

Eddy Currents

e(b) $-\frac{O(t)}{At}$ glt. HUDEX Xne e(t) =intensity constant

M. Lustig, EECS UC Berkeley

Pre-emphasis PREMPHESTS ! Bo > chung caliter phase Grudient FOR SHURT TIME CONStants Gnot (A) = Gapplied (b-24) Benslein CH. 10.3

M. Lustig, EECS UC Berkeley