Principles of MRI
EE225E / BIO265

Image Contrast

Instructor: Miki Lustig
UC Berkeley, EECS
IMAGE CONTRAST

So far assumed

\[\mathbf{M}(0) = [0, 0, M_0]^T \]

Sample is fully relaxed \(T_R \gg 3T_1 \)

In practice this is seldom true

\[I(x,y) = f^*(p, T_1, T_2, \Theta, T_R, T_E) \]

Image

Physical parameters

Instrumental parameters

Tissue has inherent variability in \(T_1, T_2, \Theta \)

What to emphasize is
Question

• What is the difference between the images?
Answer

- Both T1-weighted

spin-echo

gradient-echo

Meniscus (short TE)

Lower SNR
Spin-Echo Properties

- Robust to off-resonance effects
- Excellent Contrast

You -- Get cervical, thoracic and lumbar T2 weighted Fast Spin-Echo MRIs
Spin-Echo Properties

- Robust to off-resonance effects
- Excellent Contrast

but...

- SAR limitations (high-power RF)
- Long scan times, and long echo-time
- Mostly multi-slice 2D
- Artifacts/long scan-time in 3D

Gradient-echo: Fast, short TE, often 3D
Spin-Echo Pulse Sequence

Excitation

Refocusing

180°

TE~10+ ms

Acquisition

Spin-Echo+

Gradient-Echo
Gradient-Echo Pulse Sequence

No Refocusing!

- RF
- Gz
- Gy
- Gx
- A/D

Gradient-Echo
Gradient-Echo Pulse Sequence

- RF
- Gx
- Gy
- Gz
- A/D

TE ~ 1+ ms

Gradient-Echo
MRI is all about contrast......
Contrast Knobs: GRE Variations

- Spoiling (sequence)
- RF: Flip / Phase
- Timing (TR, TE)
- Preparation Sequence

Flip/Phase

Spoiling

No preparation

Fat-saturation
Assumptions

• \(m(x,y,t) \) is a function of time

• Approximation:
 - when analyzing \(I(x,y) \), assume \(m(x,y,t=TE) \)

• Consider:
 - \(T1 > TR > 3T2 \)
 - Later: \(TR < 3T2 \)
Review Magnetization Dynamics

- RF Excitation
- Free-precession/ (gradient induced)
- Relaxation
SATURATION RECOVERY

RF

90

90

90

90
Very Long TR: Full Relaxation

- M_{xy} decays completely before next RF
- M_z recovers fully before next RF
- Full signal after RF
Long TR: T1-Weighting

- M_{xy} decays completely before next RF
- M_z partially recovers before next RF
- T1-weighted signal after RF
1st TR usually not used
STEADY-STATE SIGNAL: \[M_0 (1 - e^{-\frac{TR}{T_1}}) \]

IMAGE IS!

\[I(x,y) = k \rho(x,y) \left[1 - e^{-\frac{TR}{T_1(x,y)}} \right] \]

\[T_1 = 0 \]

\[T_{1\rho} < T_1 \]

\[I(x,y) \equiv k \rho(x,y) \frac{TR}{T_1(x,y)} \]

\[T_{1\rho} = T_0 \]

\[I(x,y) = k \rho(x,y) \left[1 - e^{-\frac{TR}{T_1(x,y)}} \right] e^{-\frac{TR}{T_2}} \]
SPIN-ECHO VERSION

RF

M_0

M_z

$||M_{xy}||_0$

$||M_{xy}||$

90

180

TR

TE

T_2^*

T_2
If $TE < T_1$

$$I(x,y) = k_p(\alpha, y) \left[1 - e^{-\frac{TE}{T_1}} \right] e^{-\frac{TR}{T_1}}$$

Proton Density:
- TE short $\ll T_2$
- TR long $\gg T_1$

$$I \equiv k_p(\alpha, y)$$

T₁ Weighting:
- TE short $\ll T_2$
- $TR \sim T_1$

$$I \equiv k_p C_1 e^{-\frac{TR}{T_1}}$$

($T_1 = 4000 ms, TE = 15 ms$ @ 1st Brain)

T₂ Weighting:
- TR long $\gg T_2$
- $TE \sim T_2$

$$I \equiv k_p e^{-\frac{TE}{T_2}}$$

($TR = 2500 ms, TE = 90 ms$ @ Brain)

T_1 - Anatomy

T_2 - Lesion Sensitive
Let \(E_t = e^{-\frac{TR}{T_1}} \)

\[
M^{-}_2 = M^{+}_2 e^{-\frac{TR}{T_1}} + (1 - e^{-\frac{TR}{T_1}})M_0
\]

\[
M^{-}_0 = M^{+}_0 E_t + M_0 (1 - E_t)
\]

And

\[
M^{+}_2 = M^{-}_2 \cos \Theta
\]

In steady-state

\[
M^{-}_2 = M^{-}_2 \cos \Theta E_t + M_0 (1 - E_t)
\]

\[
M^{-}_2 (1 - \cos \Theta E_t) = M_0 (1 - E_t)
\]

\[
M^{-}_0 = \frac{M_0 (1 - E_t)}{1 - \cos \Theta E_t}
\]

\[
M^{+}_2 = \frac{M_0 (1 - E_t) \sin \Theta}{1 - \cos \Theta E_t}
\]
$I(x,y) = k \rho (x,y) \frac{(1-E_1(x,y)) \sin \theta}{1-\cos \theta E_1(x,y)} e^{-\frac{FE}{12\gamma}}$

WHAT IS θ THAT MAX SIGNAL

θ SMALL, SIN θ SMALL, NO SIGNAL

θ LARGE, M_2 SMALL, NO SIGNAL

OPTIMUM:

$\theta_E = \cos^{-1} E_1 = \cos^{-1} \left(e^{-\frac{7\pi}{14}} \right)$

[ERNEST ANGLE]
Example:

\[\text{TR}=9T1, \; \Theta_E = 68.4^\circ \]

Optimum \[M_{xy}^+ \]

\[M_{xy}^+ = M_0 \sqrt{\frac{1-E_1}{1+E_1}} \]

\text{Optimum signal not contrast}
After q_0, $M_2 = 0$

At $\textcircled{5}$

$$M_2 = 1 - e^{-\frac{(TR-TI)}{T_1}}M_0$$

At $\textcircled{6}$

$$M_2 = -M_0 \left(1 - e^{-\frac{(TR-TI)}{T_1}} \right)$$

At $\textcircled{7}$

$$M_2 = -M_0 \left(1 - e^{-\frac{(TR-TI)}{T_1}} \right) e^{-\frac{-TT}{T_1}} +$$

$$+ \left(1 - e^{-\frac{-TT}{T_1}} \right) M_0 =$$

$$= -M_0 e^{-\frac{-TT}{T_1}} + M_0 e^{-\frac{-TR}{T_1}} + M_0 + M_0 e^{-\frac{-TT}{T_1}}$$

$$M_2 = M_0 \left(1 - 2e^{-\frac{-TT}{T_1}} + e^{-\frac{-TR}{T_1}} \right)$$
\[
I(x,y) = k_0(x,y) \left[1 - 2e^{-\frac{TE}{T_1(x,y)}} + e^{-\frac{TR}{T_1(x,y)}} \right] e^{-\frac{TE}{T_2(x,y)}}
\]

IR GIVES
1) GREATER T_1 CONTRAST (ALMOST TWICE)
2) NULL SPECIFIC TISSUE
 - FAT \Rightarrow STIR $T_1 = 250$ ms
 - CSF \Rightarrow FLAIR $T_1 = 2000$ ms

NULL TIME:
\[
1 - 2e^{-\frac{TI}{T_1}} + e^{-\frac{TR}{T_1}} = 0
\]
\[
TI = -T_1 \log \left[\frac{1 + e^{-\frac{TR}{T_1}}}{2} \right]
\]

$TR >> T_1$
\[
TI \approx -T_1 \log \frac{1}{2} = 0.693 T_1
\]
Example: Fat MULLING

T_1 of fat $\approx 260 \text{ ms}$, $TR = 900$

$TI = -260 \log \left(1 + \frac{5000}{500}\right) = 167 \text{ ms}$
Minor Stroke
Short TR Steady-State Imaging

• M_{xy} persists before next RF
• May have shifted in phase
• Adds/Subtracts from next signal

• makes a HUGE difference on image contrast
Balanced SSFP

True-FISP, FIESTA, balanced FFE, BASG

- Do nothing at the end
- Balanced Gradients

Oppelt 1986, Duerk 1997
Balanced SSFP

- High steady-state signal
- T2/T1 mixed contrast
- Sensitive to off-resonance

M. Lustig, EECS UC Berkeley
Balanced-SSFP Dark Bands

- Must limit precession
 - Short TR
- Limits resolution

Freeman 1971
Balanced-SSFP Cardiac Imaging

- Fast (TR=2-5ms)
- Good contrast
- Flow-compensated
Gradient Spoiling

- Reduce sensitivity to off-resonance by Spoiling Mxy before next RF

FFE, FISP, GRASS, GRE, FAST, Field Echo

Spin distribution across slice
Question

- Does gradient spoiling eliminates transverse signal at the end of TR?

Spin distribution across slice

First TR

Steady State
• No, its an average of balanced-SSFP but....
• No dark bands
• Lower signal than balanced-SSFP
• Reduced contrast
Gradient Spoiled vs Balanced SSFP

(Courtesy of Krishna Nayak, USC Electrical Engineering)
RF Spoiled Imaging

- Goal: Pure T1 contrast with short TR
- Fast, 3D T1-Weighted imaging
- Need to “Zero” Mxy at the end of TR

SPGR, FLASH, T1-FFE, RF-spoiled FAST

Frahm 1987, Zur 1991
RF Spoiling

- The Trick:
 - Quadratic Phase Increment of RF
 - Effectively “Random” angle RF every TR
 - Spoiled magnetization has random phase and does not add

- Low SNR!
RF Spoiled Contrast Enhanced MR

Pre-Contrast SPGR

Post-Contrast SPGR
RF Spoiled Dynamic Contrast MR

Enhancement over Time

Repeated 6-second breath holds, 10 seconds apart
32 slices using 3x accelerated imaging
Gradient Echo Sequence Comparison

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Balanced SSFP</th>
<th>Gradient Echo</th>
<th>RF-Spoiled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spoiling</td>
<td>None</td>
<td>Gradient</td>
<td>RF + Gradient</td>
</tr>
<tr>
<td>Transverse Magnetization</td>
<td>Retained</td>
<td>Averaged</td>
<td>Cancelled</td>
</tr>
<tr>
<td>Contrast</td>
<td>T_2/T_1</td>
<td>T_2/T_1</td>
<td>T_1</td>
</tr>
<tr>
<td>SNR</td>
<td>High (but Banding)</td>
<td>Moderate</td>
<td>Lower</td>
</tr>
</tbody>
</table>

M. Lustig, EECS UC Berkeley
Quiz I

Here are a balanced SSFP and RF-Spoiled post-contrast image. Which is the image on the left?

1) RF-Spoiled Post Gd
2) Balanced SSFP
Quiz I

2) Balanced SSFP
 Bright Fluid (T2-like)

1) RF Spoiled post Gd
 T1 contrast, enhanced wall
Image Comparison

Identify the images shown (Same TR, TE, Flip)

<table>
<thead>
<tr>
<th></th>
<th>RF Spoiled</th>
<th>Balanced SSFP</th>
<th>Gradient Spoiled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RF Spoiled</td>
<td>Balanced SSFP</td>
<td>Gradient Spoiled</td>
</tr>
<tr>
<td>2</td>
<td>Gradient Spoiled</td>
<td>RF Spoiled</td>
<td>Balanced SSFP</td>
</tr>
<tr>
<td>3</td>
<td>RF Spoiled</td>
<td>Gradient Spoiled</td>
<td>Balanced SSFP</td>
</tr>
</tbody>
</table>
Image Comparison

- Same TR, TE, flip angle
- Differences: Signal, Contrast, Dark-Bands

3) RF Spoiled Gradient Spoiled Balanced SSFP
Contrast Knobs: GRE Variations

- Spoiling (sequence)
- RF: Flip
- Timing (TR, TE)
- Preparation Sequence
Flip Angle in Gradient Echo Sequences

Does increasing the flip angle increase signal?
1) Yes: Signal always increases with flip angle.
2) No: Signal decreases as flip angle increases
3) Sometimes: The signal peaks at a specific flip angle
Flip Angle in Gradient Echo Sequences

Does increasing the flip angle increase signal?
1) Yes: Signal always increases with flip angle.
2) No: Signal decreases as flip angle increases
3) Sometimes: The signal peaks at a specific flip angle
Flip Angle Selection

Blood

- Signal vs. Flip Angle

Muscle

- Signal vs. Flip Angle

Ernst Angle

Buxton 1990
Flip Angle Selection?

The best flip angle to use is found by:
1) Maximizing the image SNR
2) Maximizing contrast between certain tissues
3) Both 1 and 2
Flip Angle Selection?

The best flip angle to use is found by:

3) Both 1 and 2: maximizing SNR and contrast (CNR)
Flip Angle Examples

RF-Spoiled

Best?

Gradient Spoiled

Balanced SSFP

5° 10° 20° 30° 40° 50° Best?
Contrast Knobs: GRE Variations

- Spoiling (sequence)
- RF: Flip / Phase
- Timing (TR, TE)
- Preparation Sequence
Echo Time (TE) Considerations

- **Longer TE:** \(T2^* \) weighting (BOLD, Perfusion)
 - BOLD Imaging for fMRI
 - \(T2^* \)-weighted perfusion

- **Short TE**
 - Reduced flow/motion sensitivity
 - Reduced \(T2^* \) weighting

- **In-phase and Out-of-phase TE**
 - Water/Fat cancellation, Dixon Imaging
Dixon-Based Imaging

RF

Signal

Water

Fat

Fat

Water
Liver Imaging

In-Phase

Out-of-Phase

Water

Fat
Question

Gradient spoiled images - which is opposed phase?

1) Left

2) Right
Gradient Spoiling: TE Effects

Left adrenal lesion with signal loss on opposed phase imaging – Diagnosis Benign Adenoma

M. Lustig, EECS UC Berkeley
Contrast Knobs: GRE Variations

- Spoiling (sequence)
- RF: Flip / Phase
- Timing (TR, TE)
- Preparation Sequence
Preparation Options

- Fat Saturation
- Inversion - Recovery
- Myocardial Tagging
- T2-prep
- Magnetization Transfer

Imaging Sequence:

Mag Prep ... Mag Prep
Fat Saturation Example

Not Fat-Sat RF-Spoiled

Fat Sat RF-Spoiled
Cardiac: bSSFP and IR-RF-Spoiled

Balanced SSFP

IR-Prep RF-Spoiled
Summary

- Spoiling (sequence)
- RF: Flip / Phase
- Timing (TR, TE)
- Preparation Sequence

Flip/Phase

Spoiling

No preparation

Fat-saturation
Summary and Acronyms

• RF spoiled
 SPGR, FLASH, T1-FFE, RF-spoiled FAST

• Balanced SSFP
 True-FISP, FIESTA, balanced FFE, BASG

• Gradient spoiled
 FFE, FISP, GRASS, GRE, FAST, Field Echo

• Vendor acronyms are confusing -- Demand that they tell you what it really is...!

• Acronym source: mr-tip.com
Slide Acknowledgements

Brian Hargreaves
Lewis Shin
Krishna Nayak
Phil Young
Neal Bangerter
Pauline Worters
Bruce Daniel
Misung Han

Robert Herfkens
Anne Sawyer
Marcus Alley
Shreyas Vasanawala
Jiang Du
Graeme Bydder
Gary Glover