COURSE INFORMATION

**Instructor:** Prof. Jeffrey Bokor, 508 Cory Hall, 2-4134, jbokor@eecs

**Class Schedule:** Tues. and Thurs. 11AM-12:30PM, room 299 Cory Hall

**Office Hours:** Wed. 2-3PM other hours possible by appt. - send email

**Course Secretary:** Rosemary Alonso, 2-2386, rosemary@eecs

**Grading Policy:** Approximately 6 take-home problem sets (75%) and a final project (25%).

**Prerequisites:** You should have taken Introductory Quantum Mechanics (Physics 137A at Berkeley, for example), and have had at least some introduction to semiconductor physics. See me if you have any questions.

## BIBLIOGRAPHY

**Primary texts:**


**Supplementary** (This is not an exhaustive list. There are dozens of books on solid-state and semiconductor physics. These are some of my favorites. You may find others you like better.):


*Quantum Transport: Atom to Transistor,* by Supriyo Datta (Cambridge Press, 2005)

*The Physics of Low-Dimensional Semiconductors,* by John H. Davies (Cambridge Press, 2006)


**Background** (These cover the prerequisites. Again, there are many other choices)
