HW \#1

Due Feb. 26 (Thu) in class
Please submit Hard Copy. Please remember to put down your name and SID.

1. We have derived the expressions for the 3-d (bulk) and 2-d (quantum well) electron density of states in class. Follow the same procedure, derive the 1-d electron density of state function for a "quantum wire" with dimension of L_{x} and L_{y} in the x and y direction, and unconfined in the z direction.
a. Derive the 1-D electron density of state function, $\rho_{1 D}(E)$.
b. Find the first three energy levels for $\mathrm{L}_{\mathrm{x}}=\mathrm{L}_{\mathrm{y}}=5 \mathrm{~nm}$, assume the electron effective mass $m_{e}^{*}=0.1 \cdot m_{0}$, where m_{0} is the free electron mass.
c. Find the electron concentration if the Fermi level is located just below the second energy level (as you find in Part b.). For simplicity, assume $\mathrm{T}=0$ Kevin.
2. Consider a "quantum box" (also called quantum dot or QD) with dimensions of $L_{x} \times L_{y} \times L_{z}$.
a. Derive the $0-\mathrm{D}$ electron density of state function, $\rho_{0 D}(E)$.
b. Find the first three energy levels for $L_{x}=L_{y}=L_{z}=5 \mathrm{~nm}$, assume the electron effective mass $m_{e}^{*}=0.1 \cdot m_{0}$, where m_{0} is the free electron mass.
c. Find the electron concentration if the Fermi level is located just below the second energy level (as you find in Part b.). For simplicity, assume $\mathrm{T}=0 \mathrm{Kevin}$.
3. Refer to the diagram on the right. Under biased condition, both conduction and valence bands are populated. The electron distribution in conduction band is described by Fermi-Dirac distribution, $\mathrm{f}_{\mathrm{C}}\left(\mathrm{E}_{2}\right)$, with quasi-Fermi energy F_{C}. The electron distribution in valence band is described by Fermi-Dirac distribution, $\mathrm{f}_{\mathrm{V}}\left(\mathrm{E}_{1}\right)$, with quasi-Fermi energy F_{v}. Here, E_{1} and E_{2} are related by an optical transition (i.e., they have the same k). For optical matrix element, use
$\left|\hat{e} \cdot \vec{P}_{c v}\right|^{2}=\frac{m_{0}}{6} E_{p}$ with $E_{p}=25.7 \mathrm{eV}$

a. Use the energy reference below (i.e, $\mathrm{E}_{\mathrm{V}}=0$ and $\mathrm{E}_{\mathrm{C}}=\mathrm{E}_{\mathrm{g}}$, the bandgap energy), find E_{1} and E_{2} as functions of the photon energy, $\mathrm{h} \omega$.
b. Derive $f_{C}\left(E_{2}(\hbar \omega)\right)$ as a function of $\mathrm{h} \omega$.
c. Derive $f_{V}\left(E_{1}(\hbar \omega)\right)$ as a function of $\mathrm{h} \omega$.
d. Assuming $\mathrm{E}_{\mathrm{g}}=1 \mathrm{eV}, \mathrm{F}_{\mathrm{C}}-\mathrm{F}_{\mathrm{V}}=1.2 \mathrm{eV}, m_{e}^{*}=0.1 m_{0}, m_{h}^{*}=0.4 m_{0}$. Calculate and plot the emission probability $f_{e}(\hbar \omega)=f_{C}\left(E_{2}(\hbar \omega)\right) \cdot\left[1-f_{V}\left(E_{1}(\hbar \omega)\right)\right]$ for photon energies from 0.8 to 1.5 eV . Plot for two temperatures: $\mathrm{T}=0$ and $\mathrm{T}=300 \mathrm{~K}$.
e. Repeat part d) for the Fermi inversion factor: $f_{g}(\hbar \omega)=f_{C}\left(E_{2}(\hbar \omega)\right)-f_{V}\left(E_{1}(\hbar \omega)\right)$
f. Plot the gain spectra for $\mathrm{T}=0$ and $\mathrm{T}=300 \mathrm{~K}$ for the condition given in d).
g. Plot the spontaneous emission spectra for $\mathrm{T}=0$ and $\mathrm{T}=300 \mathrm{~K}$ for the condition given in d).
