Spring 2016 Prof. Ming Wu

Grading Note:

- (1) Make sure you see all the problems.
- (2) Numerical answers within 10% will receive full credit.
- 1. A double heterostructure (DH) edge-emitting laser has a cavity length of 200 μ m, a width of 1 μ m, an active layer thickness of 0.1 μ m and a confinement factor of 50%. The front and back mirror reflectivity is 50% and 100%, respectively. The intrinsic loss of the cavity is 10 cm⁻¹. The wavelength of the laser is 1.24 μ m, and the effective refractive index of the laser waveguide is 3.0.
 - a) What is the threshold gain of the laser?
 - b) What is the photon lifetime of the cavity?
 - c) What is the optical Q (quality factor) of the cavity?
 - d) What is the total quantum efficiency in % and slope efficiency in Watt/Amp?
- 2. An astronaut brought a semiconductor sample back from Mars. It was found the semiconductor had an electron effective mass of $1 \, m_0$, a hole effective mass of $0.1 \, m_0$, and a bandgap energy of $1 \, \text{eV}$. Other properties were similar to typical semiconductors on earth. The refractive index is 3, and the optical matrix element is

$$\left|\hat{e}\cdot\vec{P}_{cv}\right|^2 = \frac{m_0}{6}E_p$$
 with $E_p = 24 \text{ eV}$

- a) Draw the energy band diagram (E-vs-k) of this semiconductor. Pay attention to the curvature of the conduction and valance bands.
- b) The semiconductor is optically pumped until the quasi-Fermi level for holes is 0.1 eV below E_V. What is the hole concentration in cm⁻³?
- What is the electron concentration? Where is the quasi-Fermi level for electrons (in reference to the conduction band edge, E_C)?
- d) Draw both quasi-Fermi levels in the diagram in a).
- e) Is there net gain at this pumping condition? How do you determine that?
- f) If the semiconductor has net gain, find the peak optical gain at zero Kelvin. If the semiconductor has net loss, find the optical absorption coefficient at photon energy of 1.1 eV.
- 3. A semiconductor with electron and hole effective masses of $0.1~m_0$ and $1~m_0$, respectively, is used for quantum well inter-subband infrared photodetectors. The bandgap energy of the well material is 1~eV. The target absorption wavelength is $10~\mu m$. Assume both semiconductors have the same inter-subband scattering time.
 - a) What is the width of the quantum well if it is doped N type?
 - b) What is the width of the quantum well if it is doped P type?

- c) At optimum doping concentrations (which might be different for N and P type quantum wells), which quantum well has higher absorption coefficient? What is the ratio of their absorption coefficients?
- 4. Two semiconductors are used for quantum well lasers: Semiconductor A has $m_e^* = m_h^* = 0.1 m_0$, and Semiconductor B has $m_e^* = m_h^* = 1 m_0$. Both semiconductors have the same bandgap energy at 1 eV, and the same optical matrix element. The quantum wells have the same width.
 - a) At the same pumping condition (i.e., same excess electron/hole concentration), which semiconductor quantum well has higher gain? What is the ratio of their gain coefficient?
 - b) To reach Bernard-Duraffourg gain condition, which semiconductor requires higher pumping (i.e., higher carrier concentration)? Qualitative and graphical argument is fine.