EE 232 Lightwave Devices
Lecture 14:
Strained Quantum Well Laser

Reading: Chuang, Sec. 10.3-10.4
(There is also a good discussion in Coldren, Appendix 11)

Instructor: Ming C. Wu

University of California, Berkeley
Electrical Engineering and Computer Sciences Dept.
Reduction of Lasing Threshold Current Density by Lowering Valence Band Effective Mass

Bernard-Duraffourg Condition:
\[F_C - F_V \geq \omega \geq E_{e1} - E_{h1} \]

Ordinary Semiconductor

- \(m_h^* \approx 6m_e^* \)
- High transparency carrier concentration

Ideal Semiconductor

- \(m_h^* \approx m_e^* \)
- Low transparency carrier concentration

Bernard-Duraffourg Condition in Quantum Well

Bernard-Duraffourg Condition:

\[F_C - F_V = E - E_{h1} \]

(a) \(m_h^* > m_e^* \) (as in most semiconductors)

\[F_V > E_{h1} \]

\[F_C \gg E_{e1} \]

\[N_{tr} = \rho_e^2 d (F_C - E_{e1}) = \frac{m_e^*}{\pi \hbar^2 L_z} (F_C - E_{e1}) \]

Large \(N_{tr} \rightarrow \) High threshold current

(b) \(m_h^* = m_e^* \) (Ideal semiconductor)

\[F_V = E_{h1} \]

\[F_C = E_{e1} \]

\[N_{tr} = \frac{m_e^*}{\pi \hbar^2 L_z} \int_{E_{e1}}^{\infty} f_C(E) dE \] is low
Transparency Carrier Concentration for “Ideal” Quantum Well

(b) Ideal Semiconductor

\[m_h^* = m_e^* \implies F_V = E_{h1}, \quad F_C = E_{e1} \]

\[N_{tr} = \frac{m_e^*}{\pi} \int_0^\infty \frac{1}{E-E_{e1}} dE \frac{1}{1 + e^{\frac{E-E_{e1}}{k_BT}}} \]

\[= \frac{k_BT m_e^*}{\pi} \int_0^\infty \frac{1}{1 + e^x} dx \]

\[= \frac{k_BT m_e^*}{\pi} \left(-\ln(1 + e^{-x}) \right)_0^\infty \]

\[= \frac{k_BT m_e^*}{\pi} \ln 2 \]

For \(m_e^* = 0.067m_0 \)

\[N_{tr} \approx 4.6 \times 10^{17} \text{ cm}^{-3} \]
Transparency Carrier Concentration for Normal Quantum Well

Transparency Condition:

\[F_C - F_V = E_{e1} - E_{h1} \]

(a) Ordinary Semiconductor

\[N_{tr} = \rho_e^{2d} (F_C - E_{e1}) = \frac{m_e^*}{\pi} \frac{\Delta}{2L_z} \]

To estimate \(\Delta \), note that \(N = P \)

\[P = N_V^2 \exp\left(-\frac{-\Delta}{k_B T}\right) = \frac{k_B T m_h^*}{\pi} \frac{-\Delta}{2L_z} \exp\left(-\frac{-\Delta}{k_B T}\right) \]

\[N = P \quad \Rightarrow \quad \exp\left(-\frac{-\Delta}{k_B T}\right) = \frac{\Delta}{k_B T} \frac{m_e^*}{m_h^*} \]

For \(m_h^* \approx 6m_e^* \) (in 1.55\,\mu m laser),

\[\Delta = 1.43 k_B T \]

\[N_{tr} = 1.43 \frac{k_B T m_e^*}{\pi} \frac{1}{2L_z} \]
Effective Mass Asymmetry Penalty

\[\frac{N_{tr}^{\text{Ordinary}}}{N_{tr}^{\text{Ideal}}} = \frac{1.43}{\ln 2} = 2 \]

Threshold current density reduction is more than a factor of 2:

\[J_{th} = J_{\text{nonrad}} + J_{rad} + J_{\text{Auger}} \]

\[\frac{J_{th}}{qd} = AN + BN^2 + CN^3 = \frac{N}{\tau} + BN^2 + CN^3 \]

\(\tau \): Shockley-Read-Hall nonradiative recombination lifetime

\(J_{\text{Auger}} \) is greatly reduced when \(N \) is lowered

(1) \(N^3 \) is reduced by 8x

(2) C is also reduced due to band structure change by strain
Bandgap-vs-Lattice Constant of Common III-V Semiconductors

![Graph showing bandgap energy and lattice constant for various III-V semiconductors](image)

- **Compressive Strain**
- **Tensile Strain**
- **Lattice Matched**
 - $\text{In}_{0.53}\text{Ga}_{0.47}\text{As}$

Fig. 7.6. Bandgap energy and lattice constant of various III-V semiconductors at room temperature (adopted from Tien, 1988).
Qualitative Band Energy Shifts Under Strain

- **Biaxial Strain**
- **Hydrostatic Strain**
- **Tensile Strain**
- **Compressive Strain**

\[\delta E_C \]

- Compressive Strain
- Tensile Strain
- Hydrostatic Strain

\[HH, LH \]

\[SO \]
Strain and Stress

\[\varepsilon = \varepsilon_{xx} = \varepsilon_{yy} = \frac{a_0 - a(x)}{a_0} \]

- \(a_0 \) : lattice constant of InP
- \(\varepsilon < 0 \) : compressive strain
- \(\varepsilon > 0 \) : tensile strain

\[\varepsilon_{\perp} = \varepsilon_{zz} = -2 \frac{C_{12}}{C_{11}} \varepsilon \]

- \(C_{ij} \) : Compliance Tensor
- \(C_{12} \approx 0.5C_{11} \)

\[
\begin{bmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{zz}
\end{bmatrix} =
\begin{bmatrix}
C_{11} & C_{12} & C_{12} \\
C_{12} & C_{11} & C_{12} \\
C_{12} & C_{12} & C_{11}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\varepsilon_{zz}
\end{bmatrix}
\]

Biaxial stress:
- \(\sigma_{xx} = \sigma_{yy} = \sigma \)
- \(\sigma_{zz} = 0 \)

\[\Rightarrow C_{12} \varepsilon_{xx} + C_{12} \varepsilon_{yy} + C_{11} \varepsilon_{zz} = 0 \]

\[\varepsilon_{zz} = -2 \frac{C_{12}}{C_{11}} \varepsilon \]
Band Edge Shift

\[E_C = E_g(x) + \delta E_C \]
\[E_{HH} = -P_\varepsilon - Q_\varepsilon \]
\[E_{LH} = -P_\varepsilon + Q_\varepsilon \]

\[\delta E_C = a_C (\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) = 2a_C \left(1 - \frac{C_{12}}{C_{11}}\right) \varepsilon \]

\[P_\varepsilon = -a_V (\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) = -2a_V \left(1 - \frac{C_{12}}{C_{11}}\right) \varepsilon \]

\[Q_\varepsilon = -b \left(\frac{\varepsilon_{xx} + \varepsilon_{yy}}{2} - \varepsilon_{zz}\right) = -b \left(1 + 2 \frac{C_{12}}{C_{11}}\right) \varepsilon \]

\[a = a_C - a_V \quad \text{: hydrostatic potential} \]
\[b \quad \text{: shear potential} \]
Strain Parameters in III-V

(Coldren, p.535)

<table>
<thead>
<tr>
<th>Material</th>
<th>a(Å)</th>
<th>a</th>
<th>b</th>
<th>d</th>
<th>C_{11}</th>
<th>C_{12}</th>
<th>C_{44}</th>
<th>dE/dP</th>
<th>Δ(eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs</td>
<td>5.6533</td>
<td>−8.68</td>
<td>−1.7</td>
<td>−4.55</td>
<td>11.88</td>
<td>5.38</td>
<td>5.94</td>
<td>11.5</td>
<td>0.34</td>
</tr>
<tr>
<td>InAs</td>
<td>6.0583</td>
<td>−5.79</td>
<td>−1.8</td>
<td>−3.6</td>
<td>8.329</td>
<td>4.526</td>
<td>3.959</td>
<td>10.0</td>
<td>0.371</td>
</tr>
<tr>
<td>AlAs*</td>
<td>5.6611</td>
<td>−7.96</td>
<td>−1.5</td>
<td>−3.4</td>
<td>12.02</td>
<td>5.70</td>
<td>5.89</td>
<td>10.2</td>
<td>0.30</td>
</tr>
<tr>
<td>GaP*</td>
<td>5.4512</td>
<td>−9.76</td>
<td>−1.5</td>
<td>−4.6</td>
<td>14.12</td>
<td>6.253</td>
<td>7.047</td>
<td>11.0</td>
<td>0.10</td>
</tr>
<tr>
<td>InP</td>
<td>5.8688</td>
<td>−6.16</td>
<td>−2.0</td>
<td>−5.0</td>
<td>10.22</td>
<td>5.76</td>
<td>4.60</td>
<td>8.5</td>
<td>0.10</td>
</tr>
<tr>
<td>AlP*</td>
<td>5.4635</td>
<td>−8.38</td>
<td>−1.75</td>
<td>−4.8</td>
<td>13.2</td>
<td>6.3</td>
<td>6.15</td>
<td>9.75</td>
<td>0.10</td>
</tr>
<tr>
<td>GaSb</td>
<td>6.0959</td>
<td>−8.28</td>
<td>−1.8</td>
<td>−4.6</td>
<td>8.842</td>
<td>4.026</td>
<td>4.322</td>
<td>14.7</td>
<td>0.8</td>
</tr>
<tr>
<td>InSb</td>
<td>6.4794</td>
<td>−7.57</td>
<td>−2.0</td>
<td>−4.8</td>
<td>6.47</td>
<td>3.65</td>
<td>3.02</td>
<td>16.5</td>
<td>0.98</td>
</tr>
<tr>
<td>AlSb*</td>
<td>6.1355</td>
<td>2.04</td>
<td>−1.35</td>
<td>−4.3</td>
<td>8.769</td>
<td>4.341</td>
<td>4.076</td>
<td>−3.5</td>
<td>0.75</td>
</tr>
</tbody>
</table>

* Indirect gap.
Band-Edge Profile and Subband Dispersion

(b) An unstrained quantum well

E_c(0)

E_{HH}(0) = E_{LH}(0)

(c) A quantum well under a tensile strain

E_c(0)

E_{LH}(0)

E_{HH}(0)

(a) A quantum well under a compressive strain

E_c(0)

k_x

HH1

LH1

HH2

HH1

LH1

HH2