Figure 1.12: Components of an optical receiver.
PHOTODIODES

• PIN
• APD
I_p = R P_{in}, R = responsivity (A/W)
[square-law detector]
\eta = \text{electrons out/photons in}
= (I_p/q)/(P_{in}/h\nu) = (h\nu/q)R
R = \eta q/h\nu = \eta\lambda/1.24
1.24 = hc/q (\mu m/V)

\\Delta f = \left[2\pi(\tau_{tr} + \tau_{RC})\right]^{-1},
T_{tr} = \text{transit time} \sim W/v_d \sim 100 \text{ ps},
\tau_{RC} = \text{ckt response}

\textbf{Figure 4.1: A semiconductor slab used as a photodetector.}
Figure 4.2: Wavelength dependence of the absorption coefficient for several semiconductor materials. (After Ref. [2]; ©1979 Academic Press; reprinted with permission.)
Figure 4.3: (a) A p–n photodiode under reverse bias; (b) variation of optical power inside the photodiode; (c) energy-band diagram showing carrier movement through drift and diffusion.
4.2 COMMON PHOTODETECTORS

Intrinsic, hi res Also DH structure (also waveguided)

\[\eta \sim 1, \]
\[W \sim 5\mu m \]

Figure 4.5: (a) A $p-i-n$ photodiode together with the electric-field distribution under reverse bias; (b) design of an InGaAs $p-i-n$ photodiode.
Figure 4.12: Equivalent circuit for (a) high-impedance and (b) transimpedance front ends in optical receivers. The photodiode is modeled as a current source in both cases.
Table 4.1 Characteristics of common p–i–n photodiodes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Si</th>
<th>Ge</th>
<th>InGaAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>λ</td>
<td>μm</td>
<td>0.4–1.1</td>
<td>0.8–1.8</td>
<td>1.0–1.7</td>
</tr>
<tr>
<td>Responsivity</td>
<td>R</td>
<td>A/W</td>
<td>0.4–0.6</td>
<td>0.5–0.7</td>
<td>0.6–0.9</td>
</tr>
<tr>
<td>Quantum efficiency</td>
<td>η</td>
<td>%</td>
<td>75–90</td>
<td>50–55</td>
<td>60–70</td>
</tr>
<tr>
<td>Dark current</td>
<td>I_d</td>
<td>nA</td>
<td>1–10</td>
<td>50–500</td>
<td>1–20</td>
</tr>
<tr>
<td>Rise time</td>
<td>T_r</td>
<td>ns</td>
<td>0.5–1</td>
<td>0.1–0.5</td>
<td>0.02–0.5</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Δf</td>
<td>GHz</td>
<td>0.3–0.6</td>
<td>0.5–3</td>
<td>1–10</td>
</tr>
<tr>
<td>Bias voltage</td>
<td>V_b</td>
<td>V</td>
<td>50–100</td>
<td>6–10</td>
<td>5–6</td>
</tr>
</tbody>
</table>
Figure 4.7: Impact-ionization coefficients of several semiconductors as a function of the electric field for electrons (solid line) and holes (dashed line). (After Ref. [24]; ©1977 Elsevier, reprinted with permission.)
Figure 4.8: (a) An APD together with the electric-field distribution inside various layers under reverse bias; (b) design of a silicon reach-through APD.
Table 4.2 Characteristics of common APDs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Si</th>
<th>Ge</th>
<th>InGaAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>λ</td>
<td>μm</td>
<td>0.4–1.1</td>
<td>0.8–1.8</td>
<td>1.0–1.7</td>
</tr>
<tr>
<td>Responsivity</td>
<td>R_{APD}</td>
<td>A/W</td>
<td>80–130</td>
<td>3–30</td>
<td>5–20</td>
</tr>
<tr>
<td>APD gain</td>
<td>M</td>
<td>—</td>
<td>100–500</td>
<td>50–200</td>
<td>10–40</td>
</tr>
<tr>
<td>k-factor</td>
<td>k_A</td>
<td>—</td>
<td>0.02–0.05</td>
<td>0.7–1.0</td>
<td>0.5–0.7</td>
</tr>
<tr>
<td>Dark current</td>
<td>I_d</td>
<td>nA</td>
<td>0.1–1</td>
<td>50–500</td>
<td>1–5</td>
</tr>
<tr>
<td>Rise time</td>
<td>T_r</td>
<td>ns</td>
<td>0.1–2</td>
<td>0.5–0.8</td>
<td>0.1–0.5</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Δf</td>
<td>GHz</td>
<td>0.2–1</td>
<td>0.4–0.7</td>
<td>1–10</td>
</tr>
<tr>
<td>Bias voltage</td>
<td>V_b</td>
<td>V</td>
<td>200–250</td>
<td>20–40</td>
<td>20–30</td>
</tr>
</tbody>
</table>
RECEIVER NOISE

• Shot noise
• Thermal noise
Figure 4.13: Ideal and degraded eye patterns for the NRZ format.
Example of Typical Link Experiment

Eye diagram

-35 -30 -25 -20
1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 1E-9
Bit Error Ratio
Received Optical Power (dBm)

Some distance of fiber
Back to back
SHOT NOISE

• $I(t) = I_p + i_s(t)$

• *White noise*

• $\sigma_s^2 = \langle i_s^2(t) \rangle = 2qI_p\Delta f$

• $I_p \to I_p + I_d$
Figure 10-4 Random electron flow between two electrodes. This basic configuration is used in the derivation of shot noise.
THERMAL NOISE

• $I(t) = I_p + I_s(t) + I_{T}(t)$

• $\sigma_T^2 = \langle i_T^2(t) \rangle = \left(4k_B T / R_L \right) \Delta f$

• White noise

• $\sigma_T^2 = (4k_B T / R_L) F_n \Delta f$

• $F_n = (S/N)_{in} / (S/N)_{out} = \text{Amplifier noise figure}$
4.3. RECEIVER DESIGN

Figure 4.11: Diagram of a digital optical receiver showing various components. Vertical dashed lines group receiver components into three sections.
SIGNAL TO NOISE RATIO

• SNR = avg signal pwr/noise pwr
 \[= \frac{I_p^2}{\sigma^2} \]

• \(I_p = R_p P_{\text{in}} \), \(R_p = \eta q/h \nu \)

• \(\sigma^2 = \sigma_s^2 + \sigma_T^2 \), \(\sigma_T^2 \gg \sigma_s^2 \) in practice

• \((\text{SNR})_T = R_L R_p^2 P_{\text{in}}^2 / 4k_B T F_n \Delta f \)

• \(\text{NEP} = P_{\text{in}} / (\Delta f)^{1/2} = \left(4k_B T F_n / R_L R_p^2 \right)^{1/2}, \quad \text{SNR} = 1 \)

• \((\text{SNR})_s = R_p P_{\text{in}} / 2q \Delta f \)
Figure 10-2 The intermingling of noise power with that of a signal causes the total power to fluctuate. The rms fluctuation ΔP limits the accuracy of power measurements.
1.3. Electrical Signals

Figure 1.9: (a) Transmitted digital signal, (b) distorted and noisy electrical signal at the receiver, and (c) reconstructed digital signal. The thin solid line in the middle shows the decision level.
Figure 10-19 An ideal noiseless pulse train (a) is contaminated by noise as in (b). A reconstruction using a threshold decision level k_iS leads to (c). Note that the reconstruction of the last "1" pulse is in error because of a large negative noise fluctuation.
Figure 4.18: (a) Fluctuating signal generated at the receiver. (b) Gaussian probability densities for 1 and 0 bits. The dashed region shows the probability of incorrect identification.
BIT ERROR RATE

• BER = \(\frac{1}{2} \left[P(0/1) + P(0/1) \right] \)

• \(\text{min BER for} \)
 \[
 \frac{(I_D - I_0)}{\sigma_0} = \frac{(I_1 - I_D)}{\sigma_1} = Q
 \]

• \(I_D = \frac{(\sigma_0 I_1 + \sigma_1 I_0)}{(\sigma_0 + \sigma_1)} \)

• \(Q = \frac{(I_1 - I_0)}{(\sigma_1 + \sigma_0)} \)
Figure 4.19: Bit-error rate versus the Q parameter.
Figure 10-20 Plot of Equation (10.9-4) for the error probability (BER) as a function of the (peak) signal to noise current ratio at the detector output.
Transmission Performance

• Bit Error Rate (BER) vs. Min. Ave. Received Power

\[BER = \frac{1}{2} \text{erfc}\left(\frac{Q}{\sqrt{2}}\right) \]

\[Q = \frac{I_1 - I_0}{\sigma_1 + \sigma_0} = \text{Optical SNR} \]

\[SNR = \frac{P_1 - P_0}{\sigma_1^2 + \sigma_0^2} \approx 2Q^2 \]

\[BER \approx \frac{e^{-\left(\frac{Q^2}{2}\right)}}{Q\sqrt{2\pi}} \]

Q=6 \rightarrow BER=1e-9; Q=7 \rightarrow BER=1e-12
MINIMUM REC’D PWR

\((P_{\text{rec}})_{\text{pin}} \sim Q \sigma_T / R \)

\(\sigma_T^2 = (4k_B T / R_L) \Delta f \)

\(\Delta f \sim B / 2 \)

\(Q \sim 6 \) for \(10^{-9} \) BER

\(P_{\text{rec}} \sim 0.6 \mu W \) or \(-32.2 \) dBm for

\(\lambda = 1550 \text{nm}, R = 1 \text{ A/W}, \)

\(\sigma_T \sim 100 \text{nA}, B \sim 10 \text{ Gb/s} \)
QUANTUM LIMIT

• quantum limit is $<N_p> = 10$ photons/bit, with $\sigma_0 = 0$ and BER $< 10^{-9}$

• $P_{rec} = <N_p> \ h \nu B$
 \[= 13 \text{ nW or } -48.9 \text{ dBm at } B = 10 \text{ Gb/s} \]

• In practice, P_{rec} is 20 dB larger, corresponding to 1000 photons/bit
POWER PENALTY

• Increases P_{rec}
• Transmission impairments
 • Chromatic dispersion
 • PMD
 • SPM, XPM
 • FWM
• Receiver impairments
 • Extinction ratio P_0/P_1
 • RIN
 • Timing jitter
Power Penalty – Extinction Ratio

\[I_0 < I_{th} \rightarrow \frac{I_0}{P_0} \sim \text{spont. emission} \]
\[I_0 \geq I_{th} \rightarrow \frac{I_0}{P_0} > 0 \]

\[Q = \frac{I_1 - I_0}{\sigma_1 \tau_0} ; \quad I_1 = R P_1 ; \quad I_0 = R P_0 \]

\[Q = \frac{R P_1 - R P_0}{\sigma_1 \tau_0} = \frac{R P_1 (1-r)}{\sigma_1 \tau_0} \frac{P_{rec}}{(1+r) \frac{P_{rec}}{\sigma_1 \tau_0}} \]

\[Q = \frac{(1-r) \frac{2 R P_{rec}}{(1+r)}}{(1-r) \frac{2 R P_{rec}}{(1+r)}} \]

\[\sigma_1 \tau_0 = \sigma_f \]

\[\overline{P_{rec}}(r) = \frac{(1+r)}{(1-r)} \frac{\sigma_f Q}{2} \]

\[\text{SNR Penalty} = \delta = 10 \log \left(\frac{\overline{P_{rec}}(r)}{\overline{P_{rec}}(0)} \right) \]

\[\delta = 10 \log \left(\frac{1+r}{1-r} \right) \]

Fig. 4.10
Figure 4.20: Power penalty versus the extinction ratio r_{ex}.
Figure 4.21: Power penalty versus the intensity noise parameter η.
Figure 4.22: Power penalty versus the timing jitter parameter $B\tau_j$.

-4.6. SENSITIVITY DEGRADATION

173
FIGURE 2.76 Functional diagram of complete direct-detection receiver, including (from left to right) optical preamplifier with pump feedback loop, photoreceiver with photodiode and front-end amplifier, 3-dB signal tap, post-amplifier with equalizer, clock-recovery circuit with RF voltage-controlled oscillator (VCO) and phase-locked loop, clock phase adjust ($\Delta \phi$) and integration/decision circuit.
NRZ & RZ SPECTRAL DENSITY

\[\text{[1111]}, \quad d = 0.5 \]

\[\text{T T T T T} \quad T = \frac{1}{B-1} \]
\[k = \frac{1}{T} = B \]

\[\text{[1111]}, \quad d = 1.0 \]
\[f = 0, \quad dc \]

\[\text{[1010]} \]
\[f = \frac{1}{2T} = B/2 \]

power density of random bit stream

\[\delta(b) \]

\[N \text{RZ} \quad [d = 1] \]

\[\delta(b) \]

\[R \text{Z} \quad [d = 0.5] \]
2.3. **Bit-Stream Generation**

![Graphs](image)

Figure 2.5: Power spectral density of (a) NRZ bit stream and (b) RZ bit stream with 50% duty cycle. Frequencies are normalized to the bit rate and the discrete part of the spectrum is shown by vertical arrows.
Figure 4.23: Measured receiver sensitivities versus the bit rate for $p-i-n$ (circles) and APD (triangles) receivers in transmission experiments near 1.3- and 1.55-μm wavelengths. The quantum limit of receiver sensitivity is also shown for comparison (solid lines).
Figure 4.24: BER curves measured for three fiber-link lengths in a 1.55-μm transmission experiment at 10 Gb/s. Inset shows an example of the eye diagram at the receiver. (After Ref. [110]; ©2000 IEEE; reprinted with permission.)
Performance Impairment

- Power penalty is typically due to:
 - Mode partition noise
 - Dispersion
 - Chirp
 - Noise
 - Jitter

Example of a closed eye
Forward Error Correcting Codes in Fiber Optic Systems

Motivation: Increase System Margin
»Increased System Capacity
»Decrease System Cost
»Longer Transmission Distances
»Increased Amplifier spacing
»Lower the optical power: less pump power, less nonlinear impairments
Forward error correction (FEC)

© J.Wiley & Sons, Inc., 2003

© J.Wiley & Sons, Inc., 2003
EXPERIMENTAL PROGRESS IN ERROR CORRECTION

Pioneers: Reed-Solomon, Viterbi,…

Source: C. Chandrasekhar (Lucent)
Block Turbo Code FEC*

Mitsubishi Electric Corporation T. Mizuochi, et al., OFC2003 PD-21

Q-Factor \sim 6.3 \text{ dB}
ELECTRONIC DISPERSION EQUALIZATION in Enterprise Legacy LAN *(Scintera Networks)*

- Large legacy infrastructure of installed Multimode Fiber
 - Designed for “FDDI” at 300-m distance; supports 1GE
- Modal dispersion limits distance to 75 m at 10-Gb/s data rate
- LX4 uses CWDM: expensive and not commercially viable

Enables Cost-effective 10G over Enterprise Legacy LAN

Source: A. Shanbhag (Scintera Networks)
Electronic signal processing can mitigate PMD.

Fig. 1: DFL chip layout.

Moeller, Thiede et al. ECOC 99
the end
\[
\begin{align*}
\bar{i}_s^2 & = 2 \left(\frac{P_e \eta}{h \nu} \right)^2 \\
\bar{i}_{N_1}^2 & = \frac{3e^2(P + P_B) \eta \Delta \nu}{h \nu} + 2e i_d \Delta \nu \\
\bar{i}_{N_2}^2 & = \frac{4kT_e \Delta \nu}{R_L}
\end{align*}
\]

Figure 11-21 Noise equivalent circuit of a photodiode operating in the direct (video) mode. The modulation index \(m \) is taken as unity, and it is assumed that the modulation frequency is low enough that the junction capacitance and transit-time effects can be neglected. The resistance \(R_L \) is assumed to be much smaller than the shunt resistance \(R_d \) of the diode, so the latter is neglected. Also neglected is the series diode resistance, which is assumed small compared with \(R_L \).