Semiconductor lasers [read Svelto 9.4]

- forward biased p-n diode
 - active area \(\approx 20 \mu m \times 250 \mu m \times 1 \mu m \)
 - typical current \(\approx 15 \) mA
 - current density \(\approx 300 - 1000 \) A/cm\(^2\)
 - typ. voltage \(\approx 2 \) V
 - input power \(\approx 30 \) mW

\[\lambda : \]
- AlGaAs/GaAs \(- 720 - 850 \) nm
- InGaAsP/InP \(- 1.15 - 1.67 \) \(\mu m \)
- InGaAs/GaAs \(- 900 - 1100 \) nm
- InGaP/InGaAlP/GaAs \(- 630 - 750 \) nm
- InGaN/sapphire \(- 405 - 450 \) nm
How to achieve inversion

p-n junction

![Diagram of p-n junction with heavily doped p and heavily doped n regions.](image)

Equilibrium

\[E_c \]

Holes

\[E_v \]

Electrons

\[F_n = F_p \]

Junction space-charge region

→ **Depleted**

Forward bias

![Diagram showing forward bias with increased carrier concentration in the active region.](image)

Carrier concentration controlled by carrier diffusion
Homojunction laser threshold high because carriers spread out by diffusion - larger volume ⇒ lower carrier density

→ Double Heterostructure Laser

Confine carriers using heterostructure techniques.

\[\text{p-AlGaAs} \quad \text{GaAs} \quad \text{n-AlGaAs} \]

\[\Delta E_c \]

\[\Delta E_v \]

\[\sim 0.15 \mu m \]

- Carriers build up and confined in the GaAs layer
- Thickness is only \(\sim 0.15 \mu m \). For same current density, carrier density is increased \(\times 6 \) compared to \(1 \mu m \) diffusion thickness
- Much lower threshold current - room temp cw operation possible

\[\text{In}_{x} \text{Ga}_{1-x} \text{As}_{y} \text{P}_{1-y} \] can be lattice matched to \[\text{InP} \] for the right \(x/y \) ratio: Bandgap of alloy is lower than \[\text{InP} \] gap - so the active region is \[\text{InGaAsP} \].

- Active region also has higher index of refraction:
 \[n = 3.2 \] (GaAs)
 \[3.4 \] (AlGaAs)
 so light is guided in the active layer
Quantum Well lasers.

- Insert one or more quantum wells into the active region.
- Modified DOS increases gain as discussed earlier in semester.

Band diagram

Step-index

GRINSCH

- Graded index QW laser

Graded composition-confined region
- **Distributed Feedback (DFB) laser**

 need for single mode lasers:
 - For high speed communication lasers ≥ 1 GHz
 - Fiber dispersion causes pulse broadening
 - Need to limit the bandwidth
 - DFB laser gives single mode selection

 Simple Fabry-Perot GaAs laser, L = 250 µm

 mode spacing:

 Typical laser gain bandwidth ≈ 6 meV

 → ~10 modes oscillate

 Introduce a periodic index variation along the laser gain length

 This gives a resonant Bragg reflection for

 \[\Delta \beta = 2 n_{eff} \Lambda \]

 → enhance feedback for selected wavelength
 - Single mode operation
 - need short period Λ

 This is done by building and burying a corrugation structure into the laser

 ![Diagrame](image)
- Vertical cavity surface emitting laser (VCSEL)

 * Similar to the semiconductor Fabry-Perot saturable absorber structure

```
GaAs - AlAs multilayer reflector n-doped

GaAs - AlAs multilayer reflector p-doped

InGaAs - QW active layer

GaAs - 10-20 Um

GaAs - substrate
```

Current flows in vertical direction.
Structure is etched to 20 Um circular diameter

Can be built into arrays