Maxwell's equations are the result of Quantum Electrodynamics QED, which is a quantum field theory, but we are going to start at that level and work down to quantum effects. The potentials $V(r)$ described earlier are also derivable from QED.

Because photons interact with each other very very little, Maxwell's equations are accurate to an extremely good approximation in a vacuum.

If we account for all charges and motion of charge explicitly, then we have

\[\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} \]

\[\nabla \times \vec{E} = \frac{\partial \vec{B}}{\partial t} \]

\[\nabla \cdot \vec{B} = 0 \]

\[\nabla \cdot \vec{E} = \rho_{\text{total}} \]
\[
\vec{D} = \varepsilon_0 \vec{E} + \vec{P}
\]

\[
+ \vec{B} = \mu_0 (\vec{H} + \vec{M})
\]

if we treat all charges explicitly, then \(\vec{P} = 0 \) and we can substitute \(\vec{D} = \varepsilon_0 \vec{E} \) everywhere and not use \(\vec{B} \) as is often done in physics. This set of equations has unique solution for known \(\vec{P}, \vec{E}, \vec{M}, \) and \(\vec{D} \) with reasonable boundary conditions (no unknown inbound radiation field).

However, the fields often affect the motion of charge \(\vec{M} \) as we saw in our perturbation results. This gives us a feedback in our problem.
To make the problem solvable, we will separate the charge into three parts:

Currents in good conductors

\[\Rightarrow \text{use } BC's \]

Small displacements of bound charge

\[\Rightarrow \text{use } \vec{P} \Rightarrow \vec{D} \]

Known \(\vec{D} \) (thin wires, charge distribution) can be handled directly.

There are other problems which don't fall into these categories (planar, for example) which need a simultaneous solution for charge and fields.

If we look at a small neutral region of material where \(E(r,t) \) does not vary substantially, we can have a displacement of the average expectation value of the negative charge from that of the positive charge:

\[\langle \vec{P}_e \rangle - \langle \vec{P}_p \rangle \]
If we define \(\hat{\mathbf{P}} = \mathbf{g} \cdot \mathbf{N} \cdot \hat{\mathbf{r}} \) and we ignore the small scale variations, then we have a current

\[
\hat{\mathbf{j}}_{\text{bound}}(\mathbf{r},t) = \frac{\partial}{\partial t} \hat{\mathbf{P}}(\mathbf{r},t)
\]

\[
+ \hat{\mathbf{P}}_{\text{bound}}(\mathbf{r},t) = -\nabla \cdot \hat{\mathbf{P}}(\mathbf{r},t)
\]

when we then define

\[
\mathbf{D} = \varepsilon_0 \mathbf{E} + \hat{\mathbf{P}}
\]

\[
\nabla \cdot \mathbf{D} = \varepsilon_0 \nabla \cdot \mathbf{E} + \nabla \cdot \hat{\mathbf{P}} = \Phi_{\text{total}} - \Phi_{\text{bound}} = \Phi_{\text{free}}
\]

\[
+ \nabla \times \mathbf{H} = \mathbf{j}_{\text{free}} + \frac{\partial \mathbf{D}}{\partial t}
\]

For narrow band solutions, \(\hat{\mathbf{P}} \) is often linearly related to \(\mathbf{E} \), so we will have \(\hat{\mathbf{P}} = \varepsilon \mathbf{K} \mathbf{E} \) where \(\mathbf{K} \) can be a tensor in anisotropic materials, but this lets us break the loop.
We will now study the relationship \(E \rightarrow \mathbf{p} \) and \(\mathbf{p} \rightarrow E \), which will form the core of the interaction of light with matter.

First, note that a charge moving with or against an \(E \) field will add to or take away from the energy of the \(E \) field. The work done in polarizing the QM system is

\[
W = E \cdot \frac{d\mathbf{p}}{dt}
\]

This energy has two important parts: sloshing back and forth from the QM system to the field on every cycle, and a net transfer of energy QM \(\rightarrow \) EM or EM \(\rightarrow \) QM.

If the perturbation is small, the polarization will depend linearly on the \(E \) field:

\[
\mathbf{P}(\mathbf{r}, t) = \int_{-\infty}^{t} E(\mathbf{r}, \tau) h(t-\tau) d\tau
\]

where \(h(t-\tau) \) is the impulse response (tensor).
We can also limit the stimulating field to sinusoidal functional

\[\vec{E} = R(\vec{E}(r)) e^{i\omega t} \]

where \(\vec{E}(r) \) is now a phasor.

If the relationship between \(\vec{P} \) and \(\vec{E} \) is linear, as explained above, there must be a function \(\chi_0(\omega) \) such that when

\[\vec{P} = \varepsilon_0 \chi_0 \bar{\vec{E}} \]

\[+ \quad \vec{P}(t) = \text{Re} \left\{ \vec{P}(\tau) e^{-i\omega \tau} \right\} \]

note that \(\vec{P}(\tau) + \bar{\vec{E}}(\tau) \) are complex + independent of time, but the \(\vec{E} \) field + \(\vec{P} \) are both real, unlike the complex \(\psi(\vec{r}, t) \) of Q.M.

This quantity \(\chi_0 \) is called the Electric susceptibility, and is complex
IF we look at the average power from or to the field,

\[
\frac{\text{Power}}{\text{Volume}} = E \cdot \frac{\partial P}{\partial t}
\]

When using phasor notation, if you multiply (for example, to find power) you need to explicitly use the real part

\[
\frac{\text{Power}}{\text{Volume}} = \text{Re}(E e^{i\omega t}) \text{Re}(i\omega P e^{i\omega t})
\]

\[
= \frac{1}{\sqrt{2}} \left(\frac{E e^{i\omega t} + E^* e^{-i\omega t}}{i\omega P e^{i\omega t} - i\omega P^* e^{-i\omega t}} \right)
\]

\[
\text{\textbf{P}} = \varepsilon_0 \chi_e \varepsilon
\]

\[
\frac{\text{Power}}{\text{Volume}} = \frac{1}{\sqrt{2}} \left(E e^{i\omega t} + E^* e^{-i\omega t} \right) \left(i\omega \chi_e \varepsilon e^{i\omega t} - i\omega \chi_e \varepsilon e^{-i\omega t} \right)
\]

\[
= \frac{1}{\sqrt{2}} \left(E (-i\omega \chi_e \varepsilon) \chi_e^* \varepsilon \right) + \frac{1}{\sqrt{2}} \left(i\omega \chi_e \varepsilon \right) E
\]

(Keeping only the D.C. terms)
= \frac{1}{2} \text{Re}(i\omega_0 \chi_e E E^*)

= \frac{\omega}{2} \varepsilon_0 / E^2 \text{Re}(i\chi_e)$