University of California College of Engineering Department of Electrical Engineering and Computer Sciences

EECS 239 Spring 2007 Wednesday, May 16, 2007 8:00 AM-11:00 AM M.A. Lieberman

NAME	ANSWERS
FINAL EXAM	
Problem 1	
Problem 2	
Problem 3	
Problem 4	
TOTAL	

There are four problems, each having equal weight.

Problem 1. Diffusion of F Atoms in a CF₄ Discharge

A one-dimensional parallel plate discharge operating in CF₄ gas at a known uniform gas density n_{CF_4} has the left hand wall located at x=0 and the right hand wall located at x=l. The electron density n_e within the plates is everywhere uniform, $n_e=n_{e0}$. Room temperature (T=300 K) fluorine atoms, having density $n_{\text{F}}(x)$, are created in the volume by dissociation of the feedstock gas according to the reaction

$$e + CF_4 \rightarrow CF_3 + F + e$$
 (rate constant K_2)

where K_2 [m³/s] is the second order rate coefficient for generation of F atoms by electron impact with CF₄ molecules. F atoms diffuse in the CF₄ gas with a constant diffusion coefficient D_F [m²/s]. F atoms *are not lost* to the left hand wall (the recombination coefficient $\gamma_{rec} \approx 0$ at this wall.) F atoms *are lost* to the right hand wall, on which a wafer is placed, with a reaction coefficient $\gamma_{reac} = 0.2$.

(a) Give the diffusion equation and the boundary conditions at the two walls required to determine $n_{\rm E}(x)$.

$$-D_{F} \frac{d^{2}N_{F}}{dx^{2}} = K_{2} N_{CF_{4}} Neo \qquad (1)$$

$$A + X = 0, \quad P_{K} = D_{F} \frac{dN_{F}}{dx} = 0 \qquad (2)$$

$$A + X = l, \quad P_{K} = -D_{F} \frac{dN_{F}}{dx} = \frac{\gamma_{reac}}{2(2 - \gamma_{reac})} N_{F} U_{K}^{T} \qquad (3)$$

$$\overline{O}_{K} = \left(\frac{8(kT)^{1/2}}{\pi M_{F}}\right)^{1/2} \qquad \frac{1}{4} \gamma_{reac} \sqrt{N_{F}}$$

(b) Solve the equation in (a) to determine $n_F(x)$ and the flux Γ_F [m⁻²-s⁻¹] of F atoms incident on the right hand wall.

$$\begin{aligned}
\Omega_{\mathcal{E}} &= -\frac{K_{2} \Omega_{\mathcal{E}_{1}} \Omega_{0}}{2 D_{\mathcal{E}}} \times^{2} + C \\
Satisfies (1) and (2)
\end{aligned}$$

$$\frac{d\Omega_{\mathcal{E}}}{dX} &= -\frac{K_{2} \Omega_{\mathcal{E}_{1}} \Omega_{0}}{\Omega_{\mathcal{E}}} \times \\
At &\times = l;
\end{aligned}$$

$$\begin{aligned}
K_{2} \Omega_{\mathcal{E}_{1}} \Omega_{0} &= \frac{\mathcal{E}_{2} \Omega_{\mathcal{E}_{1}} \Omega_{0}}{2 \Omega_{\mathcal{E}}} \times \\
K_{2} \Omega_{\mathcal{E}_{1}} \Omega_{0} &= \frac{\mathcal{E}_{2} \Omega_{\mathcal{E}_{1}} \Omega_{0}}{2 \Omega_{\mathcal{E}}} \times \\
\frac{1}{2} \Omega_{\mathcal{E}_{1}} \Omega_{0} &= \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \\
\frac{1}{2} \Omega_{\mathcal{E}_{1}} \Omega_{0} &= \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \\
\Omega_{\mathcal{E}_{1}} \Omega_{0} &= \frac{1}{2} \frac{1}{2$$

Problem 2. RF Inductive Discharge Design

A cylindrical discharge (R=7 cm, l=30 cm) operating at a pressure of 10 mTorr in argon gas has an ion flux at the plasma-sheath edge at each endwall of $\Gamma_{+s}=2\times10^{20}$ ions/m²-s. Assume that there are low voltage sheaths at all discharge surfaces and that the discharge operates in the intermediate pressure regime, $R>\lambda_i>(\Gamma_i/\Gamma_e)l$, where λ_i is the ion-neutral mean free path, and Γ_i and Γ_e are the ion and electron temperatures in volts.

(a) Find numerical values for the electron temperature T_e [V], the ion bombarding energy ε_i [V], and the power supplied to (and absorbed by) the discharge, P_{abs} [W].

Particle balance!

$$\lambda i = 3 \times 10^{-3} \text{ m}$$
 $h_e = 0.12$, $h_R = 0.15$
 $d_{eff} = 0.19 \text{ m}$
 $n_g d_{eff} = 6.3 \times 10^{19} \text{ m}^{-2}$
 $Fig 10:1 \Rightarrow Te = 2.5 \text{ V}$
 $E_i = 5.2 Te = 13 \text{ V}$

Power balance:

 $Fig 3:17 \Rightarrow E_c = 81 \text{ V}$
 $2\tau = 99 \text{ V}$
 $A_{eff} = 2.4 \times 10^{-2} \text{ m}^2$
 $u_B = 2.5 \times 10^3 \text{ m/s}$
 $n_S l = P_{+S} / u_B = 8.1 \times 10^{16} \text{ m}^{-3}$
 $n_O = n_e / n_L = 6.9 \times 10^{17} \text{ m}^{-3}$
 $P_{+0s} = e E_T \cdot n_O u_B \cdot A_{eff}$
 $= 6.40 \text{ W}$

(b) Assuming that this discharge is inductively driven at 27.12 MHz by a 5-turn circumferential coil having a radius b = 8 cm, find *numerical values* for the rf current I_{rf} [A] flowing in the coil, and for the voltage V_{rf} [V] across the coil terminals.

HINT: Assume that stochastic heating is small compared to ohmic heating.

Fig 3.16
$$\Rightarrow$$
 $V_m = 2.1 \times 10^7 \text{ s}^{-1}$
 $N_{SR} = N_0 h_R = 1.1 \times 10^{17} \text{ m}^{-3}$
 $W_{Pe} = 1.8 \times 10^{10} \text{ vod/s}$
 $J_p = C/\omega pe = 1.6 \times 10^{-2} \text{ m}$
 $C_m = 108 \text{ S/m}$
 $R_s = N^2 \frac{T_1 R}{C_m l_2 J_p} = 9.1 \Omega$
 $L_s = 4.9 \times 10^{-7} H$
 $I_{vf} = 11.8 \text{ A}$
 $V_{rf} = 1000 \text{ V}$

Problem 3. Etchant/Unsaturate Ratio in a CF₄ Discharge With O₂ Addition.

Consider a CF₄/O₂ plasma chemistry in a steady state, low pressure discharge. You may assume that the densities of all species (charged and neutral) are constant within the discharge. Consider first the reactions in the discharge volume with their second order rate coefficients [m³/s]

$$e + CF_4 \rightarrow CF_3 + F + e$$
 (rate coefficient K_1)
 $e + O_2 \rightarrow 2O + e$ (rate coefficient K_2)
 $CF_3 + O \rightarrow COF_2 + F$ (rate coefficient K_3)
 $e + CF_3 \rightarrow CF_2 + F + e$ (rate coefficient K_4)

In addition, assume that the first order rate coefficients $[s^{-1}]$ for loss of F atoms, COF₂ molecules, and CF₂ molecules to all discharge wall surfaces are K_F , K_{COF_2} , and K_{CF_2} , respectively, and that there are no losses of CF₃ molecules and O atoms to the walls.

(a) Give the three rate equations for dn_{α}/dt , where $\alpha = CF_3$, O and F, in terms of the rate coefficients, the known concentrations n_e , n_{CF_a} , n_{O_2} , and the n_{α} 's.

$$\frac{d N_{c\bar{f}_3}}{dt} = K_1 N_e N_{c\bar{f}_4} - K_3 N_{c\bar{f}_3} N_o - K_4 N_e N_{c\bar{f}_3} = 0$$
 (1)
$$\frac{d N_o}{dt} = 2 K_2 N_e N_{o_2} - K_3 N_{c\bar{f}_3} N_o = 0$$
 (2)

$$\frac{dN_F}{dt} = K_1 N_e N_{CF_4} + K_3 N_{CF_3} N_0 + K_4 N_{CF_3} N_e$$

$$- K_F N_F = 0 \quad (3)$$

(b) In the steady state, solve these equations to determine n_{CF_3} , n_O , and n_F , as functions of the rate coefficients and the assumed known concentrations n_e , n_{CF_4} , and n_{O_2} . Hence, show that the ratio of n_F/n_{CF_3} increases with (small) O_2 addition to a CF_4 discharge.

$$(1) - (2) \Rightarrow N_{cF3} = \frac{K_{1} N_{cFu} - 2K_{2} N_{02}}{K_{4}}$$

$$(2) + (4) \Rightarrow N_{0} = \frac{K_{4}}{K_{3}} \frac{2K_{2} N_{e} N_{02}}{(K_{1} N_{eFu} - 2K_{2} N_{02})}$$

$$(1) + (3) \Rightarrow N_{F} = \frac{2K_{1} N_{e} N_{eFu}}{K_{F}}$$

$$(6)$$

Problem 4. Etching of a Silicon Substrate in a Fluorine Gas Discharge

Consider the following model of F_2 molecule chemical etching of a silicon substrate having volume density $n_{\rm Si}$ [m⁻³] and surface site density n_0' [m⁻²]. Let θ_0 be the fraction of the surface sites that are bare silicon, θ_2 be the fraction covered with SiF₂, and θ_4 be the fraction covered with SiF₄ ($\theta_0 + \theta_2 + \theta_4 = 1$). Let F₂ molecules with gas phase density $n_{\rm F_2}$ [m⁻³] near the substrate adsorb on θ_0 to form SiF₂ and on θ_2 to form SiF₄, with the same rate coefficient $K_{\rm ads}$. Let SiF₄ molecules thermally desorb from θ_4 with rate coefficient $K_{\rm desor}$. There is no adsorption of F₂ molecules on θ_4 and no thermal desorption of SiF₂ (or Si).

(a) Find the surface coverages θ_0 , θ_2 , and θ_4 , and find the chemical (horizontal) etch rate E_h [m/s].

$$\frac{d\theta_{y}}{dt} = \text{Kods } \text{N}_{f2} \, \partial_{1} - \text{Kdesor} \, \theta_{y} = 0$$

$$\frac{d\theta_{2}}{dt} = \text{Kods } \text{N}_{f2} \, (1-\theta_{2}-\theta_{4}) - \text{Kods } \text{N}_{f2} \, \theta_{2} = 0$$

$$\Rightarrow 1-2\theta_{2}-\theta_{4} = 0 \quad \text{and} \quad \theta_{4} = \frac{\text{Kods } \text{N}_{f2}}{\text{Kdesor}} \, \theta_{2}$$

$$\text{Solving},$$

$$\theta_{2} = \frac{\text{Kdesor}}{2 \, \text{Kdesor} + \text{Kods } \text{N}_{f2}} \, \theta_{4} = \frac{\text{Kods } \text{N}_{f2}}{2 \, \text{Kdesor} + \text{Kods } \text{N}_{f2}}$$

$$E_h = \frac{n_0'}{n_{si}} K_{desor} \partial_{4} = \frac{n_0'}{n_{si}} K_{ads} n_{F2} \partial_{2} //$$

Now assume that a flux $\Gamma_i = n_{is}u_B$ of ions is incident on the substrate surface, where u_B is the Bohm velocity. This flux produces an ion enhanced desorption of SiF₂ and SiF₄, having a yield Y_i of desorbed molecules per incident ion, which is the same for SiF₂ and SiF₄. In addition, there is thermal desorption of SiF₄ as in part (a). Find the ion enhanced (vertical) etch rate E_v of the silicon substrate, and find the ratio $\Gamma_{SiF_2}/\Gamma_{SiF_4}$ of the fluxes of the etch products.

$$\frac{d\theta_2}{dt} = Kads N_{F2}(1-\theta_2-\theta_4) - Kads N_{F2}\theta_2 - Y; K; N; s \theta_2 = 0$$

$$E_{V} = \frac{n_{o}'}{n_{si}} \left[\left(\frac{K_{o} + v_{i} + v_$$