ATOMS

- Central field model (4 quantum numbers + Pauli exclusion)
 \[n = 1, 2, 3, \ldots \]
 \[0 \leq l \leq n - 1 \quad (0, 1, 2, 3 \equiv s, p, d, f) \]
 \[|m_l| \leq l, \quad m_s = \pm 1/2 \]

- Spectroscopic notation: \(^{2S+1}L_J \) \((Z \leq 40)\)
 \(L \) is total orbital angular momentum \((0, 1, 2, 3 \equiv S, P, D, F)\)
 \(S \) is total spin angular momentum
 \(J = L + S; \quad (|L - S|, \ldots, L + S) \)
 \(\mathcal{E} = \mathcal{E}(L, S, J); \quad 2J + 1 \) states
 Weak dependence of \(\mathcal{E} \) on \(J \) (“fine structure”)

- Electronic configurations
 Hydrogen: \(1s \quad (^2S_{1/2}) \)
 Oxygen: \(1s^22s^22p^4 \quad (^3P_2) \)
 Argon: \(1s^22s^22p^63s^23p^6 \quad (^1S_0) \)
 Metastable argon: \(1s^22s^22p^63s^23p^54s \quad (^3P_0, \quad ^3P_2) \)
Atomic energy levels for the central field model of an atom, showing the dependence of the energy levels on the quantum numbers n and l; the energy levels are shown for sodium, without the fine structure.
METASTABLE STATES

- Most excited states can radiate a photon and make a transition to a lower energy state
 \[\implies \text{electric dipole radiation} \]

- **Selection rules** for electric dipole radiation
 - For all elements: \(\Delta l = \pm 1; \Delta J = 0, \pm 1 \)
 (but \(J = 0 \rightarrow J = 0 \) is forbidden)
 - For light elements: \(\Delta S = 0; \Delta L = 0, \pm 1 \)
 (but \(L = 0 \rightarrow L = 0 \) is forbidden)

- **Radiation lifetime** \(\tau_{\text{rad}} \sim 10^{-100} \text{ ns} \)

- Electric dipole radiation forbidden
 \[\implies \text{metastable state} \]

- **Examples**: \(\text{Ar}(4s\,^3P_0), \text{Ar}(4s\,^3P_2) \)
ARGON ENERGY LEVELS

$2P_{1/2}$ (Ar$^+$) ionization limit

$2P_{3/2}$ (Ar$^+$) ionization limit

Energy (volts)

Ground state ($l=1$)

Ground state ($l=0$)

$3p^6$ (-15.76 V)

$1S_0$ (-2.280)
$3P_1$ (-2.432)
$3P_2$ (-2.457)
$1P_1$ (-2.477)
$1D_2$ (-2.588)
$3P_0$ (-2.487)
$1D_1$ (-2.607)
$3D_2$ (-2.665)
$3D_3$ (-2.684)
$3S_1$ (-2.853)

$1P_1$ (-3.932)
$3P_0$ (-4.037)
$3P_1$ (-4.136)
$3P_2$ (-4.211)

$1S_0$ (-15.76)

750.4 nm

104.9 nm

106.7 nm

LiebermanShortCourse08
- Electronic state is a function of nuclear separations
- Potential energy curves of electronic states of a diatomic molecule
- Attractive (1, 2) and repulsive (3) states
- Vibrations and rotations also quantized

\[e\mathcal{E}_v = \hbar \omega_{vib} \left(v + \frac{1}{2} \right), \]
\[v = 0, 1, 2, \ldots \]
• Notation for diatomic molecules: $^{2S+1} \Lambda$
 $\Lambda =$ total orbital angular momentum about internuclear axis
 $(0, 1, 2, 3, \equiv \Sigma, \Pi, \Delta, \Phi)$
 $S =$ total spin angular momentum

• For Σ states, Σ^+ and Σ^- denote symmetric or antisymmetric wave function with respect to reflection through internuclear axis

• For homonuclear molecules, Λ_g and Λ_u denote symmetric or antisymmetric wave function with respect to interchange of the nuclei
 (the two nuclei are the same; e.g., O_2, N_2, but not NO)
• Most excited molecular states can radiate a photon and make a transition to a lower energy state

\[\implies \text{electric dipole radiation} \]

• Selection rules for electric dipole radiation

\[\Delta \Lambda = 0, \pm 1 \]
\[\Delta S = 0 \]

\[\Sigma^+ \rightarrow \Sigma^+ \text{ and } \Sigma^- \rightarrow \Sigma^- \]
\[g \rightarrow u \text{ and } u \rightarrow g \]

• Radiation lifetime \(\tau_{\text{rad}} \sim 10^{-10} \text{ ns} \)

• Electric dipole radiation forbidden \(\Rightarrow \) metastable state

• Examples are: \(\text{O}_2(a^1\Delta_g) \), \(\text{O}_2(b^1\Sigma_g^+) \)
• The energy required to remove the electron from a negative ion \((A^-)\) is called the **affinity energy** \(\mathcal{E}_{\text{aff}}\) of the neutral atom or molecule \(A\).

• Negative atomic and molecular ions \((A^-)\) are stable if \(\mathcal{E}_{\text{aff}} > 0\). Typically \(\mathcal{E}_{\text{aff}} \sim 0.5\text{–}3.5\) V for stable negative ions.

• Examples of stable negative ions are: \(H^-\) (but not \(H_2^-\)), \(O_2^-\), \(O^-\), \(Cl_2^-\), \(Cl^-\), \(F_2^-\), \(F^-\).

• Stable \(Ar^-\), \(N^-\), \(N_2^-\), \(H_2^-\) negative ions **do not exist**.

• Gas mixtures containing oxygen, hydrogen and/or the halogens are generally “attaching” or “electronegative” (stable negative ions can form).

• Nitrogen and the noble gases are “**electropositive**”.
C O L L I S I O N P R I N C I P L E S

• Two kinds of collisions
 — Electron collisions with atoms and molecules
 \[e + A \rightarrow \text{products} \]
 — Heavy particle collisions with atoms and molecules
 \[A + B \rightarrow \text{products} \]
 \[A^+ + B \rightarrow \text{products} \]
 \[A^- + B \rightarrow \text{products} \]

• By Newton’s laws, two bodies cannot elastically collide to form one body
 \[e + A \rightarrow A^- \]
 \[A + B \rightarrow AB \]

• Two bodies can collide to form one body if the internal energy increases
 \[e + A \rightarrow A^-* \]
 \[A + B \rightarrow AB* \]
ELECTRON COLLISIONS WITH MOLECULES

- Frank-Condon principle
 Nuclear positions are fixed during an electronic transition
- Due to the ordering of timescales for an electron collision
 \[\frac{2a_0}{v_e} \ll \tau_{\text{vib}} \sim \tau_{\text{diss}} \ll \tau_{\text{rad}} \]
 interac. time
 \[a_0 = \text{radius of atom or molecule}; \ v_e = \text{speed of incoming electron} \]
- Dissociation
 \[e + AB \rightarrow A + B + e \]
- Excitation
 \[e + AB \rightarrow AB^* + e \]
- Ionization
 \[e + AB \rightarrow AB^+ + 2e \]
EXAMPLE OF HYDROGEN

- Electronic transitions are vertical
- $8.8 \text{ V}: \; ^3\Sigma_u^+ \rightarrow \text{dissociation (2.2 V per atom)}$
- $11.5 \text{ V}: \; ^1\Sigma_u^+ \rightarrow \text{uv radiation}$
- $11.8 \text{ V}: \; ^3\Sigma_g^+ \rightarrow \text{radiation to } ^3\Sigma_u^+ \rightarrow \text{dissociation}$
- $12.6 \text{ V}: \; ^1\Pi_u \rightarrow \text{uv radiation}$
- $15.4 \text{ V}: \; ^2\Sigma_g^+ \rightarrow \text{H}_2^+ \text{ ions}$
- $28.0 \text{ V}: \; ^2\Sigma_u^+ \rightarrow \text{H} + \text{H}^+$ (5 V per fragment)
NEGATIVE ION PRODUCTION

- Dissociative attachment
 \[e + O_2 \rightarrow O_2^- \text{(unstable)} \rightarrow e + O_2 \quad (99\%) \]
 \[\rightarrow O + O^- \quad (1\%) \]

 Resonant process (no outgoing electron to carry away excess energy)
 Small probability process (small cross section, but important)
NEGATIVE ION PRODUCTION (CONT’D)

- **Dissociative attachment**
 \[e + O_2 \rightarrow O^- \text{(unstable)} \rightarrow e + O_2 \quad (99\%) \]
 \[\rightarrow O + O^- \quad (1\%) \]

- **Polar dissociation**
 \[e + O_2 \rightarrow O^+ + O^- + e \]
 Non-resonant, high threshold energy
VIBRATIONAL AND ROTATIONAL EXCITATIONS

- Mechanism is often
 \[e + AB(v = 0) \rightarrow AB^- \text{ (unstable)} \]
 \[AB^- \rightarrow AB(v > 0) + e \]

ELECTRON COLLISIONAL ENERGY LOSSES

- Ionization
 Electronic excitation
 Elastic scattering
 Dissociation
 Vibrational excitation
 Rotational excitation
 etc.

- Electron collisional energy lost per electron-ion pair created, \(\mathcal{E}_c \), is 2–10 times larger for molecules than for atoms [p. 42]
HEAVY PARTICLE COLLISIONS

- Ordering of timescales [p. 158]
 \[
 \frac{2a_0}{v_e} \ll \frac{2a_0}{v_i} \sim \tau_{\text{vib}} \ll \tau_{\text{rad}}
 \]
 \(v_i = \) speed of incoming ion or neutral

- Adiabatic Massey principle
 Potential energy curves must cross or nearly touch for a change of electronic state (\(\Delta \mathcal{E} \lesssim 0.1 \text{ V} \))

- Examples
 \(A + B \rightarrow A^+ + B + e \) heavy particle ionization (very small)
 \(\text{(AB and AB}^+ \text{ curves do not cross or nearly touch)} \)
 \(A + B \rightarrow A^* + B \) heavy particle excitation (very small)
 \(A^+ + B \rightarrow A^+ + B \) elastic scattering (large)
 \(A^+ + A \rightarrow A + A^+ \) resonant charge transfer (large)
NONRESONANT CHARGE TRANSFER

- Example of nitrogen and oxygen atoms
 \[\text{N}^+ + \text{O} \rightarrow \text{N} + \text{O}^+ \quad \text{no threshold} \]
 \[\text{O}^+ + \text{N} \rightarrow \text{O} + \text{N}^+ \quad 0.92 \text{ V threshold} \]

- Example of oxygen atoms and molecules
 \[\text{O}^+ + \text{O}_2 \rightarrow \text{O} + \text{O}_2^+ \quad \text{no threshold} \]
 \[\text{O}_2^+ + \text{O} \rightarrow \text{O}_2 + \text{O}^+ \quad 1.4 \text{ V threshold} \]

- Charge transfer makes ions of easier-to-ionize neutrals
NEGATIVE ION LOSS

- Positive-negative ion recombination (mutual neutralization)
 \[A^- + B^+ \rightarrow A + B^* \]

 ➞ large cross section; dominates negative ion destruction

- Electron detachment
 \[e + A^- \rightarrow A + 2e \]

 Like “ionization” of \(A^- \); can be important
REACTION RATES

• Consider reaction
 \[A + B \rightarrow \text{products} \]
 \[\frac{dn_A}{dt} = -K_{AB} n_A n_B \]

• The rate coefficient is [p. 38]
 \[K_{AB}(T) = \langle \sigma_{AB} v_R \rangle_{\text{Maxwellian}} \]
 \[= \int_0^\infty f_m v_R \sigma_{AB}(v_R) 4\pi v_R^2 \, dv_R \]

• It often found to have an Arrhenius form
 \[K_{AB} = K_{AB0} e^{-\mathcal{E}_a/T} \]
 \(\mathcal{E}_a \) = threshold or “activation” energy for the process
 \(K_{AB0} \) = “pre-exponential” factor (weakly depends on T)
• Consider the reactions

\[A + B \xrightleftharpoons[K']{K} C + D \]

\(K \) has threshold or “activation” energy \(E_a \)

• From quantum mechanics and time reversibility

\[
m_R^2 g_A g_B v_R^2 \sigma(v_R) = m'_R^2 g_C g_D v'_R^2 \sigma'(v'_R)
\]

where

\[
m_R = \frac{m_A m_B}{m_A + m_B}, \quad m'_R = \frac{m_C m_D}{m_C + m_D}
\]

\[
\frac{1}{2} m_R v_R^2 = \frac{1}{2} m'_R v'_R^2 + e E_a
\]

The \(g \)'s are the degeneracies of the energy levels of the particles

• The boxed equation gives the relation between the cross sections for the forward and backward processes
Detailed Balancing (Cont’d)

- Integrate cross section relation [p. 167] over a Maxwellian distribution

\[
\frac{K(T)}{K'(T)} = \left(\frac{m'_R}{m_R}\right)^{3/2} \frac{\bar{g}_C \bar{g}_D}{\bar{g}_A \bar{g}_B} e^{-\mathcal{E}_a/T}
\]

- The \(\bar{g}\)'s are statistical weights (mean number of occupied states)
 \(\bar{g}_e = 2; \; \bar{g}_{\text{atom}} \sim 1–10; \; \bar{g}_{\text{mol}} \sim 100–1000\)
 \(\Rightarrow \bar{g}\)'s are given by thermodynamics

- The boxed equation gives the relation between the rate coefficients of the forward and backward processes

- Example

\[
e + A \xleftrightarrow[K_{\text{ex}}]{K_{\text{deexc}}} e + A^*
\]

\(K_{\text{ex}}\) (threshold energy \(\mathcal{E}_{\text{ex}}\)) is easy to measure or calculate
\(K_{\text{deexc}}\) is hard to measure or calculate, so use “detailed balancing”