Two-stage OpAmp design

- Cascode opamp: Hard to determine transistor ratio
- Two-stage opamp: Hard to determine current partition.
- Given a bandwidth spec, how to find the minimum power two-stage opamp design?
 - What are the variables?
Minimizing Power

• Assume transistor ratios within a stage is known.
 • Easy to determine by specifying/playing with V^*

• We basically have 3 variables, I_1, I_2, and C_f.

• Which variable should we determine first? Why?
OpAmp TF v.s. C_f

- We find C_f first, because it doesn’t change total power.
- As C_f increase, f_{UG} monotonically decreases and phase margin improves.
 - Meaning binary search works well.
- Given an amplifier, We always want to use minimum C_f.
Unbounded binary search

• Start with $C_f = C_{min}$ (i.e. 0.1fF).
• For current C_f, check if amplifier is stable.
• If not stable, update C_{min}, then double C_f.
 • Safety: if C_f too big (i.e. 1uF), raise Exception.
• If stable, we found an upper bound; transition to binary search.
• Implemented with bag.util.search.FloatBinaryIterator
OpAmp current partitioning

• Now that we know how to find C_f, how do we partition the current?

• Let’s just sweep and plot some curves…

• Set $I_1 = I_{\text{min}}$. For each $K = I_2/I_1$, find optimal C_f that meets phase margin spec, then plot the performance.

• Why does increasing stage 2 size make sense?
Specs v.s. K

- f_{UG} is unimodal (goes up then down).
- Given I_1, There exists a maximum achievable f_{UG}.
- This maximum seems to occur when C_f hits minimum.
Specs with/without Miller comp.

• At some critical K value, the first pole is low enough that the system is stable.
 • Increase K beyond this point only slows down the system.
• For K value below the critical value, Miller comp. trades speed with stability.
2-stage OpAmp design v.1

• Start with $I_1 = I_2 = I_{\text{min}}$.

• Determine C_f that stabilizes opamp, and get performance. If f_{UG} meets spec, done. If not, increase I_2.

• If increasing I_2 decreases f_{UG}, Increase I_1 and start over.

• Drawbacks:
 • $O(N^2 \log_2 N)$ runtime.
 • Resolution limited by current step size.

• Can we do better?
Golden-Section Search.

- Finds the max/min of unimodal functions using only $O(\log N)$ function calls.
 - Requires 3 data points to start.
 - Data points partitioned using golden ratio.
2-stage OpAmp design

• Start with $I_1 = I_2 = I_{\text{min}}$.
• Search for I_2 using Fibonacci search.
• If past critical point, change to use golden section search.
• If maximum found and it’s less than spec, increase I_1 using binary search.
• Run time: $O(\log^3 N)$
• Example implementation:
 bag'util'search'minimize_cost_golden_float()