Preliminaries

• This will be the first in a series of design methodologies we will develop
 • To keep the discussion manageable, will generally assume that only a couple of specifications are critical
 • And that all other specs will “automatically” be met
 • In practice, can inspect specs and technology capabilities to figure out which constraints are really active, and utilize the appropriate methodology

• Will largely ignore biasing details for now
 • But will patch this later
CS Amplifier Design Methodology

- Input specifications:
 - Minimum small signal gain A_v
 - Minimum 3dB bandwidth ω_{bw}
 - Fixed capacitive load C_L
 - Supply voltage V_{dd}

- Goal: minimize power

- What are our design variables?
Power and g_m

First Pass Methodology
Side Discussion: Digital vs. Analog Power

\[P_{\text{digital}} = \alpha_0 \cdot \frac{V_{DD}}{2} f_{\text{clk}} \quad P_{\text{analog}} = \frac{1}{2} C \cdot V_{DD} \cdot V^* \cdot A \cdot \omega_{\text{bw}} \]

• What needs to be true for analog to be lower power than digital?

\[g_m \text{ vs. } GBW \text{ revisited (1)} \]
g_m vs. GBW revisited (2)

g_m vs. GBW revisited (3)
Direct Implication

\[I_D = \frac{1}{2} \left(\frac{A_T \omega_{bw} V^* C_L}{1 - A_T \omega_{bw} / (\omega_T / \gamma)} \right) \]

- For a given \(V^* \), there is a maximum GBW you can achieve
 - No matter how much power you spend, cannot exceed this limit (with this topology)

Methodology Take 2
Methodology Take 2

What about r_o?
Bias Point

Extension #1: Differential Amplifier
Extension #2: Multi-Stage Amplifier

Extension #3: “Inverter” Amplifier