Noise Density Limited Amplifier Design Methodology

- **Input specifications:**
 - Minimum small signal gain A_v
 - Supply voltage V_{dd}
 - Fixed V^*
 - Maximum input-referred noise spectral density $v_{i,n}^2/\Delta f$

- **Goal:** minimize power
Small Signal Model and Noise Analysis

\[V_{\text{in}} \rightarrow R_L \rightarrow V_{\text{out}} \]

Resulting Design
Discussion (1)
- Why did we not even specify the capacitive load?

Discussion (2)
- If you could exactly set a_{v_0}, what value would you pick?
Integrated Noise-Limited Amplifier

- **Input specifications:**
 - Minimum small signal gain A_v
 - Minimum 3dB bandwidth ω_{bw}
 - Supply voltage V_{dd}
 - Fixed V^*
 - Maximum noise variance $v_{o,n}^2$

- **Goal:** minimize power

Required C_L, g_m, and I_D
Discussion (1)

- For both noise-density and integrated noise-limited amplifiers, what V^* should you pick?

Discussion (2)

- How would one know the $v_{i,n}^2/\Delta f$ or $v_{o,n}^2$ spec?
Signal Swing Limitations

Why Linearity Matters

• Option 1: Retaining the original shape of the input inherently matters
 • E.g., oscilloscope, spectrum analyzer
 • (Actually also often matters in communication systems)

• Option 2: Need to be able to discern a (small) signal out of the combination of many others
 • E.g., RF, neural front-ends
 • “Other” signals could

• Precise linearity metric depends on usage scenario
 • More next time – will use simplified metric for now
Sources of Non-Linearity

- Output limited: Non-linear Z_{out} (r_o)
- Input limited: Non-linear g_m

Input Non-Linearity with a Diff. Pair
Full Circle: SNR-Limited Design (noise density)

- **Input specifications:**
 - Minimum small signal gain A_v
 - Supply voltage V_{dd}
 - Input-referred maximum linear amplitude $V_{i,max}$
 - Signal shape (usually sinusoid) and amplitude V_{sig}
 - Externally determined bandwidth f_{bw}
 - Minimum signal-to-noise ratio SNR_{min}

- **Goal: minimize power**

Required $v_{i,n}/\Delta f$
SNR-Limited Design (total noise)

• **Input specifications:**
 - Minimum small signal gain A_v
 - Minimum 3dB bandwidth ω_{bw}
 - Supply voltage V_{dd}
 - Input-referred maximum linear amplitude $V_{i,max}$
 - Signal shape (usually sinusoid) and amplitude V_{sig}
 - Minimum signal-to-noise ratio SNR_{min}

• **Goal:** minimize power
Discussion