February 25, 2020, NY Times: Should robots have a face?

As automation comes to retail industries, companies are giving machines more humanlike features in order to make them liked, not feared.
Announcements

• Response to project abstracts sent
 • Please let me know if you didn’t receive it
 • Team web pages
 • Be careful not to leak proprietary info (interface tools via Hammer)

• Assignment 2 posted
Outline

• Module 3
 • Design of latches and flip-flops
3. Design for Performance

3. D Latch Design
MUX

• 2-input MUX

\[g_A = 1.5 \quad g_{\text{Sel}} = 1.5 \]
Transmission Gates

\[g_{sel} = 7 \]

\[A \quad | \quad \text{G} \quad | \quad Y \]

\[S \]

\[S \]

\[2 \frac{1}{3} R \]

\[1.5 \]

\[G_A = 1.5 \]

\[\frac{R \parallel 2R}{\frac{2}{3} R} \]
Latch vs. Flip-Flop

(a) Latch

(b) Flip-flop

Latches

Transmission-Gate Latch

C2MOS Latch

Usually without contention
Latches

(a) The transparent high latch (THL)
(b) The transparent low latch (TLL)

(c) Timing waveforms for the THL

Setup-Hold Time Illustrations

Circuit before clock arrival (Setup-1 case)

Data \(T_{\text{Setup-1}} \) Clock

\(t=0 \)
Setup-Hold Time Illustrations

Circuit before clock arrival (Setup-1 case)
Setup-Hold Time Illustrations

Circuit before clock arrival (Setup-1 case)
Setup-Hold Time Illustrations

Circuit before clock arrival (Setup-1 case)
Setup-Hold Time Illustrations

Circuit before clock arrival (Setup-1 case)
Setup-Hold Time Illustrations

Hold-1 case

Clock

Data

T_{Hold-1}

$t=0$

T_{Clk-Q}

T_{Hold-1}

Time

Clk-Q Delay

Q_M

Inv2

D_1

S_M

CN

TG1

Inv1

D

CP
Setup-Hold Time Illustrations

Hold-1 case

Clock

Data

T_{Hold-1}

T_{Hold-1}

Inv1

Inv2

D

D

0

CN

TG1

S_M

Q_M

EECS241B L11 FLIP-FLOPS
Setup-Hold Time Illustrations

Hold-1 case

Clock | Data

Clk-Q Delay

T_{Hold-1}

T_{Clk-Q}

D

Inv1

D_1

CN

TG1

SM

Inv2

Q_M

Time

t=0
Setup-Hold Time Illustrations

Hold-1 case

Clock Data

Time

D D_1 S_M Q_M

Inv1 Inv2

CN $TG1$ CP 0

T_{Hold-1} T_{Clk-Q}

Clk-Q Delay

Time

$T=0$
Setup-Hold Time Illustrations

Hold-1 case

Data

Clock

T_{Hold-1}

T_{Hold-1}

Clk-Q Delay

Time

D

Inv1

TG1

D_1

CN

CP

S_M

Inv2

Q_M

EECS241 B L11 FLIP-FLOPS
More Precise Setup Time

\[t_{D}^{2}C \]

\[t_{H} \]

\[t_{Su} \]

1.05\(t_{clk-q} \)

EECS241B L11 FLIP-FLOPS
Generating Complementary Clocks
Latch t_{D-Q} and t_{Clk-Q}

\[GF = 9.8, \quad g_f = 1.5 \]

\[g_A = \sqrt{GF} = \sqrt{1.5} = 1.2 \]

\[g_i = 1.5 \]

\[0.7 \, RC = 30 \mu s = 5 \, t_{\text{unit}} \]

\[g_i = g_f = 1.2 \]

\[t_P = (g_f + g_f + g_f + p_1 + p_2) \, t_{\text{unit}} \]

\[= (1.2 + 1.2 + 1.2 + 1.5 + 1) \, t_{\text{unit}} \]

\[= 4.9 \, t_{\text{unit}} = 1 \, t_{04} \]
t_{setup}

![Diagram of a flip-flop circuit with voltage and timing labels.]

V_{DD}

D

S

CLK

Q

2.7 V

2.2 V

$\Rightarrow 2.45 \text{ V}$

$\tau_{p, \text{c}^{2} \text{mos}, 0.5 \rightarrow 0.89}$

$= 2.1 RC = \frac{2.1}{0.7} \tau_{p} = 3.2 2\tau_{v} = 1.3 \text{ FO4}$

$\tau_{DC} = \tau_{\text{c}^{2} \text{mos}, Q} = 1.0 \text{ FO4}$
Key Point

- Two ways to design a flip-flop
 - Latch pair
 - Pulsed latch
3. Design for Performance

3.E Flip-Flop Design
Latch vs. Flip-Flop

(a) Latch

(b) Flip-flop

Flip-Flops

• Performance metrics

• Delay metrics
 • Insertion delay
 • Inherent race immunity
 • ‘Softness’ (Clock skew absorption)
 • Inclusion of logic
 • Small (+constant) clock load

\[
t_{SU} + t_{ck-q} + t_{ck-q} - t_r
\]

• Power/Energy Metrics
 • Power/energy

• Design robustness
 • Noise immunity
Scan Test