inst.eecs.berkeley.edu/~ee241b

ENERGY

MASA

Law rence Liv armon National Labs ratory

AMDA

EECS241B L14 SRAM II

EE241B : Advanced Digital Circuits

Lecture 14 – SRAM 2

Borivoje Nikolić

March 4, 2020, AnandTech

El Capitan Supercomputer Detailed: AMD CPUs & GPUs to drive 2 Exaflops of compute.

Back in August, the United States Department of Energy and Cray announced plans for a third United States exascale supercomputer, El Capitan. Scheduled to be installed in Lawrence Livermore National Laboratory (LLNL) in early 2023.

Announcements

- Quiz 2 on Thursday
- Please send me links to your project web pages
- Assignment 3 due next week
- Project midterm reports due next week

Outline

- Module 4
 - SRAM dynamic margins
 - Assist techniques

4.C Static Read/Write Margins

Writeability – BL/WL Write Margins

Highest BL voltage under which write is ٠ possible when BLC is kept precharged

EECS241B L14 SRAM II

Difference between VDD and lowest WL • voltage under which write is possible

Write Stability – Write Current (N-Curve)

C. Wann et al, IEEE VLSI-TSA 2005

Minimum current into the storage node

The Conflict Between Read and Write

V_{Th} Window

Assuming global spread

4.D Dynamic Margins

6-T SRAM Static/Dynamic Stability

- Read Margin
 - SNM: pessimistic
- Write Margin
 - WNM: optimistic
- Introduction to dynamic margins

• Three failure modes: read stability, writeability and read access time

Dynamic Write Stability

•
$$T_A < T_{write} < T_B$$

Khalil, TVLSI'08

- T_{write} = dynamic write stability
- Static margins are optimistic

Dynamic Read Stability

Khalil, TVLSI '08

EECS241B

- T_{read} = dynamic read stability
- Static margins are pessimistic

Dynamic Read Access

- $T_A < T_{access} < T_B$
- PD_1 and PG_1 are critical

Khalil, TVLSI '08

SRAM Overall Vmin

- Both read and write
- Some contradicting data

SRAM Vmin Scaling Trend

SRAM voltage often higher than logic

• J. Chang, ISSCC'20

∢

4.E SRAM Peripheral Circuits

Peripheral Circuits in SRAM

- Decoders (and pre-decoders)
- Column circuitry: read, write, multiplex, mask
- Write assist techniques
- Read assist techniques
- Redundancy
- BIST

• ECC

Array Adjustments

May be useful in technologies with strong body effect

S. Mukhopadhyay, VLSI 2006

4.F SRAM Assist Circuits

EECS241B L14 SRAM II

21

Basic Ideas

• Dynamically change voltages

WL

Dynamic V_{DD} Implementation

• VCC selection is along column direction to decouple the read & write

Zhang, ISSCC'05

Yamaoka, ISSCC'04

Collapsing V_{DD} Technique

E. Karl, ISSCC'12

Collapsing V_{DD} Technique

Negative BL

Nii, VLSI'08

WL Underdrive

• Sensing appropriate WL voltage

Carlson, CICC'08

Nho, ISSCC'10

Capacitive Write Assist + WL Underdrive

S. Ohbayashi, VLSI 2006

Capacitive Write Assist (ISSCC'20)

• 5nm SRAM [J. Chang, ISSCC'20]

Pulsed WL/BL

M.Khellah, VLSI 2006

9

Wordline pulse shape

Generating boost

Sinangil, ISSCC'2011 •

river	[0]
river	[1]
i i	
·	
_	-

ISSCC'17 – 7nm SRAM

Write Assist Techniques

- <u>Negative Bit-Line (NBL):</u>
 - increase PG1 and PU2 strength
- Improve both contention and recovery

NBL: increase PG1 strength

NBL: increase PU2 strength

ISSCC'18 - 10nm Read Assist

• Wordline underdrive

ISSCC'18 - 10nm SRAM

• Transient voltage collapse

SRAM Failure Rates

Readability, writeability, and read-stability failure rates for a 28nm 6T SRAM bitcell

Effect of bitline capacitance

Effect of clock period

Zimmer, TCAS-I'12

 \bigcirc

How Do They Stack Up?

• 28nm bulk CMOS

SRAM In Practice

• 7nm AMD Zen2 (Singh, ISSCC'20)

SRAM In Practice

• 7nm AMD Zen2 (Singh, ISSCC'20)

Next Lecture

- More peripheral circuits
- ECC
- Alternatives to 6T SRAM

