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MarketWatch, March 28: Opinion: There’s no returning to regular 

schooling as online learning goes mainstream, by Alex Hicks

When in-person education resumes, online learning tools and 
methods will be entrenched in the system

Announcements

• Project midterm reports due today, March 31
• Please e-mail me the link to your web page

• Assignment 3 due Thursday, April 2.
• Quiz next Tuesday

• Reading – req’d
• Rabaey et al, LPDE, Ch. 4
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Outline

• Module 5
• Power-performance tradeoffs
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5.B Power-Performance 
Tradeoffs
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Know Your Enemy

• Where does power go in CMOS?

• Switching (dynamic) power
• Charging capacitors

• Leakage power
• Transistors are imperfect switches

• Short-circuit power
• Both pull-up and pull-down on during transition

• Static currents
• Biasing currents
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Summary of Power Dissipation Sources

• – switching activity

• CL – load capacitance

• CCS – short-circuit “capacitance”

• Vswing – voltage swing

• f – frequency

DDLeakDCDDswingCSL VIIfVVCCP ~

IDC – static current
Ileak – leakage current

powerstaticrate
operation
energyP
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CMOS Performance Optimization
• Reminder - sizing: Optimal performance with equal fanout per stage

• Extendable to general logic cone through ‘logical effort’

• Equal effective fanouts (giCi+1/Ci) per stage

• Optimal fanout is around 4
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[Ref: I. Sutherland, Morgan-Kaufman‘98]EECS241B L18 POWER-PERFORMANCE II 7

Performance Optimization

Energy

Increasing performance
increases power!

Delay =1/Performance
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Performance Optimization
Energy

Delay = 1/Performance

Mircoarchitecture A

Mircoarchitecture B
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The Design Abstraction Stack

Logic/RT

(Micro-)Architecture

Software

Circuit

Device

System/Application

A very rich set of design parameters to consider!
It helps to consider options in relation to their abstraction layer

sizing, supplies, thresholds

logic family, standard cell versus custom, 
clocking

Parallel versus pipelined, general purpose 
versus application specific

Bulk, PDSOI, FDSOI, finFET

Choice of algorithm

Amount of concurrency
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Achieve the highest performance 
under the power cap

Delay

Unoptimized 
design

DmaxDmin

Energy/op

Emin

Emax

Power-Performance Optimization
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Achieve the highest performance 
under the power cap

Delay

Unoptimized 
design

Var1

Energy/op

Design
optimization
curves

Emax

DmaxDmin

Emin

Power-Performance Optimization
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Achieve the highest performance 
under the power cap

Delay

Unoptimized 
design

Var1

Var2

Energy/op

Design
optimization
curves

Emax

DmaxDmin

Emin

Power-Performance Optimization
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How far away are we from the 
optimal solution?

Delay

Unoptimized 
design

Var1

Var2

Var1 + Var2

Energy/op

Design
optimization
curves

Emax

DmaxDmin

Emin

Power-Performance Optimization
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Global optimum – best performance

Delay

Unoptimized 
design

Var1

Var2

Var1 + Var2

Global

Energy/op

Design
optimization
curves

Emax

DmaxDmin

Emin

Power-Performance Optimization
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Maximize throughput for given energy or

Minimize energy for given throughput

Delay

Unoptimized 
design

Emax

DmaxDmin

Energy/op

Emin

Power-Performance Optimization

EECS241B L18 POWER-PERFORMANCE II 16



topology A

topology B
Delay

En
er

gy
/o

p

Power-Performance Optimization

• There are many sets of parameters to adjust
• Tuning variables

• Circuit
(sizing, supply, threshold)

• Logic style
(std. cells, custom , …)

• Block topology 
(adder: CLA, CSA, …)

• Micro-architecture 
(parallel, pipelined)
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Power-Performance Optimization

• There are many sets of parameters to adjust
• Tuning variables

• Circuit
(sizing, supply, threshold)

• Logic style
(std. cells, custom , …)

• Block topology 
(adder: CLA, CSA, …)

• Micro-architecture 
(parallel, pipelined)

Globally optimal power-performance curve for a given function
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topology A

topology B
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Energy-Delay Sensitivity
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Delay

En
er

gy

f (A0,B)

f (A,B0)

(A0,B0)

f (A1,B)
D

E = SA ( D) + SB D

D0
At the solution point all sensitivities should be equal

Solution: Equal Sensitivities
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5. C Architectural Optimization
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Optimal Processors

• Processors used to be optimized for performance
• Optimal logic depth was found to be 8-11 FO4 delays in superscalar processors

• 1.8-3 FO4 in sequentials, rest in combinatorial

• Kunkel, Smith, ISCA’86

• Hriskesh, Jouppi, Farkas, Burger, Keckler, Shivakumar, ISCA’02

• Harstein, Puzak, ISCA’02

• Sprangle, Carmean, ISCA’02

• But those designs are have very high power dissipation
• Need to optimize for both performance and power/energy
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From System View: What is the Optimum?

• How do sensitivities relate to more traditional metrics:
• Power per operation (MIPS/W, GOPS/W, TOPS/W)

• Energy per operation (Joules per op)

• Energy-delay product

• Can be reformatted as a goal of optimizing power x delayn

• n = 0 – minimize power per operation

• n = 1 – minimize energy per operation

• n = 2 – minimize energy-delay product

• n = 3 – minimize energy-(delay)2 product
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Optimization Problem 

• Set up optimization problem:
• Maximize performance under energy constraints

• Minimize energy under performance constraints

• Or minimize a composite function of EnDm

• What are the right n and m?

• n = 1, m = 1 is EDP – improves at lower VDD

• n = 1, m = 2 is invariant to VDD

• E ~ CVDD
2

• D ~ 1/VDD
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Hardware Intesnity

• Introduced by Zyuban and Strenski in 2002.

• Measures where is the design on the Energy-Delay curve

• Parameter in cost function 
optimization
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Slope of the optimal E-D curve at the chosen design point

Optimum Across Hierarchy Layers

Zyuban et al, TComp’04EECS241B L18 POWER-PERFORMANCE II 26

Optimal logic depth in pipelined processors is ~18FO4
Relatively flat in the 16-22FO4 range

5.D Circuit-Level Tradeoffs
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Sizing, Supply, Threshold Optimization

• Transistor sizing can yield large power savings with small delay penalties
• Gate sizing

• Beta-ratio adjustments

• (Stack resizing) 

• Supply voltage affects both active and leakage energy

• Threshold voltage affects primarily the leakage
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CL

In Out1 2 N

Unconstrained energy: find min D = tpi

Constrained energy: find min D, under E < Emax

Where E = ei

11 jginjginjgin CCC ,,, 11 jjj WWW

Apply to Sizing of an Inverter Chain
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tp1 tp2 tpN

Constrained Optimization

• Find min(D) subject to E = Emax

• Constrained function minimization

• E.g. Lagrange multipliers

• Can solve analytically for x = Wj, VDD, VTh
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maxExExDx

0
x

maxDDxEx

Or dual:



Inverter Chain: Sizing Optimization
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• Variable taper achieves minimum energy

• Reduce number of stages at large dinc

[Ma, Franzon, IEEE JSSC, 9/94]
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Inverter Chain: Sizing Optimization
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ej – energy per stage
fj – fanout per stage

• Gate sizing (Wi)

• Supply voltage (Vdd)

xv = (VTh+ VTh)/Vdd

Vth Vdd
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Sensitivity to Sizing and Supply
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• Threshold voltage (Vth)

Low initial leakage 

speedup comes for “free”
0 Vth
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EECS241B L18 POWER-PERFORMANCE II 36

Next Lecture

• Low-power design
• Lowering supply voltage
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