inst.eecs.berkeley.edu/~ee241b

EE241B : Advanced Digital Circuits

Lecture 18 – Power-Performance Tradeoffs 2 **Borivoje Nikolić**

MarketWatch, March 28: Opinion: There's no returning to regular schooling as online learning goes mainstream, by Alex Hicks

When in-person education resumes, online learning tools and methods will be entrenched in the system

Announcements

- Project midterm reports due today, March 31
 - Please e-mail me the link to your web page
- Assignment 3 due Thursday, April 2.
 - Quiz next Tuesday
- Reading req'd
 - Rabaey et al, LPDE, Ch. 4, 5

Outline

- Module 5
 - Power-performance tradeoffs

5.B Power-Performance Tradeoffs

EECS241B L18 POWER-PERFORMANCE II

Know Your Enemy

- Where does power go in CMOS?
- Switching (dynamic) power
 - Charging capacitors
- Leakage power
 - Transistors are imperfect switches
- Short-circuit power
 - Both pull-up and pull-down on during transition
- Static currents
 - Biasing currents

(PLLS, SRAM,

2/3

43

CMOS Performance Optimization

Reminder - sizing: Optimal performance with equal fanout per stage

- Extendable to general logic cone through 'logical effort'
- Equal effective fanouts $(g_i C_{i+1}/C_i)$ per stage
- Optimal fanout is around 4

[Ref: I. Sutherland, Morgan-Kaufman'98]

The Design Abstraction Stack

A very rich set of design parameters to consider! It helps to consider options in relation to their abstraction layer

Global optimum – best performance

Power-Performance Optimization

- There are many sets of parameters to adjust
 - Tuning variables
 - Circuit
 - (sizing, supply, threshold)
 - Logic style
 (std. cells, custom , ...)
 - Block topology
 (adder: CLA, CSA, ...)
 - Micro-architecture (parallel, pipelined)

Power-Performance Optimization

- There are many sets of parameters to adjust
 - Tuning variables
 - Circuit (sizing, supply, threshold)
 - Logic style
 (std. cells, custom , ...)
 - Block topology
 (adder: CLA, CSA, ...)
 - Micro-architecture (parallel, pipelined)

topology A topology B Delay

Globally optimal power-performance curve for a given function

Energy-Delay Sensitivity

5. C Architectural Optimization

EECS241B L18 POWER-PERFORMANCE II

Optimal Processors

- Processors used to be optimized for performance
 - Optimal logic depth was found to be 8-11 FO4 delays in superscalar processors
 - 1.8-3 FO4 in sequentials, rest in combinatorial
 - Kunkel, Smith, ISCA'86
 - Hriskesh, Jouppi, Farkas, Burger, Keckler, Shivakumar, ISCA'02
 - Harstein, Puzak, ISCA'02
 - Sprangle, Carmean, ISCA'02
- But those designs are have very high power dissipation
 - Need to optimize for both performance and power/energy

From System View: What is the Optimum?

- How do sensitivities relate to more traditional metrics:
 - Power per operation (MIPS/W, GOPS/W, TOPS/W)
 - Energy per operation (Joules per op)
 - Energy-delay product
- Can be reformatted as a goal of optimizing power x delayⁿ
 - n = 0 minimize power per operation
 - n = 1 minimize energy per operation

 - $n = 2 \text{minimize energy-delay product} \leftarrow \text{improves with Wbb}$ $n = 3 \text{minimize energy-(delay)}^2 \text{ product} \leftarrow \text{improves } \text{ b} V_{DD} (O) \text{ for all } \text{$ M = 4

23

Optimization Problem

- Set up optimization problem:
 - Maximize performance under energy constraints
 - Minimize energy under performance constraints
- ${}^{\bullet}$ Or minimize a composite function of E^nD^m
 - What are the right n and m?
- n = 1, m = 1 is EDP improves at lower V_{DD}
- n = 1, m = 2 is invariant to V_{DD}

•
$$E \sim CV_{DD}^2$$

• D ~ $1/V_{DD}$

Hardware Intesnity

- Introduced by Zyuban and Strenski in 2002.
- Measures where is the design on the Energy-Delay curve
- Parameter in cost function optimization

$$F_c = (E/E_0)(D/D_0)^{\eta} \qquad 0 \le \eta < +\infty,$$

 $D\partial E$

Slope of the optimal E-D curve at the chosen design point

EECS241B L18 POWER-PERFORMANCE

25

Optimum Across Hierarchy Layers

Optimal logic depth in pipelined processors is ~18FO4 Relatively flat in the 16-22FO4 range

EECS241B L18 POWER-PERFORMANCE II Zyuban et al, TComp'04

