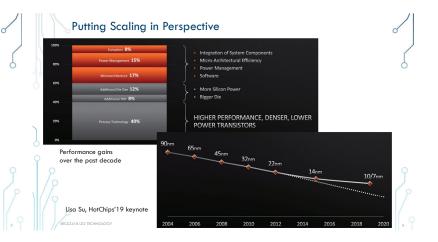
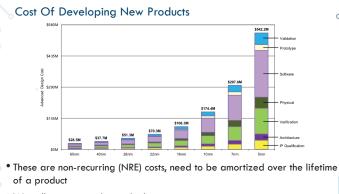


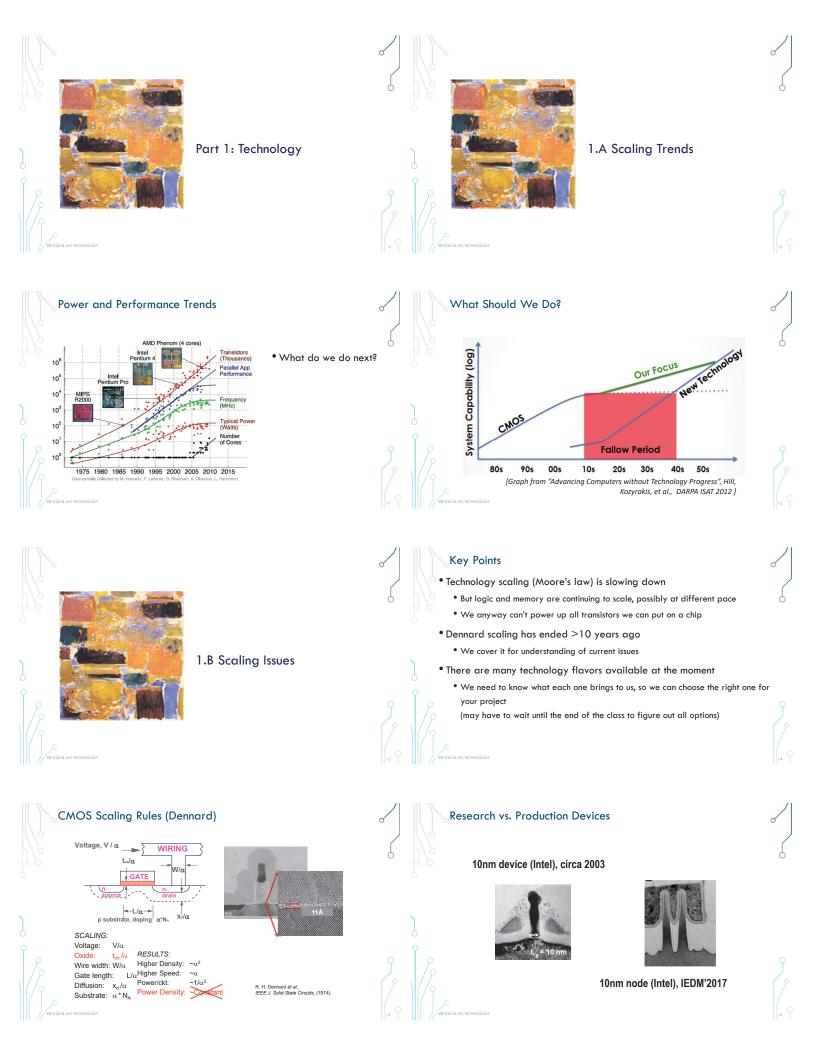
Assigned Reading

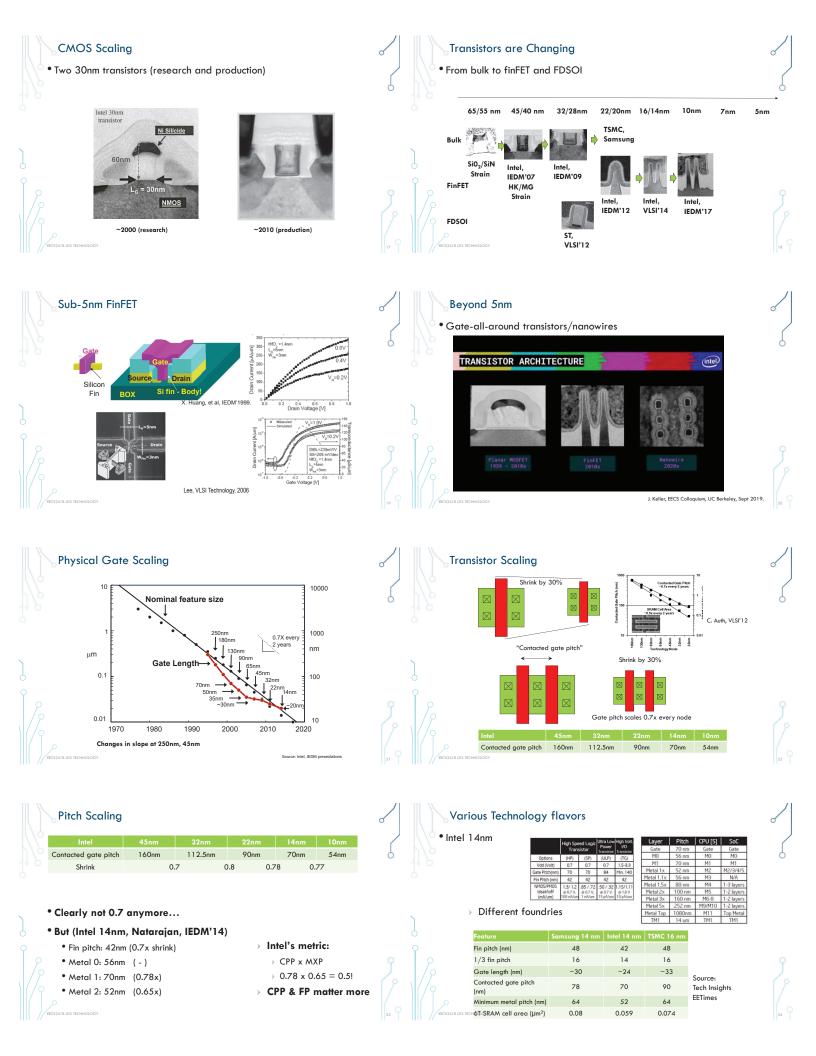

- R.H. Dennard et al, "Design of ion-implanted MOSFET's with very small physical dimensions" IEEE Journal of Solid-State Circuits, April 1974.
 Just the scaling principles
- C.G. Sodini, P.-K. Ko, J.L. Moll, "The effect of high fields on MOS device and circuit performance," IEEE Trans. on Electron Devices, vol. 31, no. 10, pp. 1386 - 1393, Oct. 1984.
- K.-Y. Toh, P.-K. Ko, R.G. Meyer, "An engineering model for short-channel MOS devices" IEEE Journal of Solid-State Circuits, vol. 23, no. 4, pp. 950-958, Aug. 1988.
- T. Sakurai, A.R. Newton, "Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas," IEEE Journal of Solid-State Circuits, vol. 25, no. 2, pp. 584 - 594, April 1990.


Outline

- Scaling issues
- Technology scaling trends
- Features of modern technologies
 - Lithography
 - Process technologies

Trends and Challenges in Digital Integrated Circuit Design

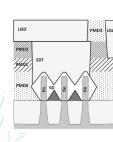

•We will attempt to dismantle this...


Major Roadblocks

- Managing complexity
 How to design a 10 billion (100 billion) transistor chip?
 And what to use all these transistors for?
- Cost of integrated circuits is increasing It takes >>\$10M to design a chip Mask costs are many \$M in 16nm technology
- Power as a limiting factor End of frequency scaling Dealing with power, leakages
- 4. Robustness issues
- Variations, SRAM, memory, soft errors, signal integrity
- 5. The interconnect problem

Announcements

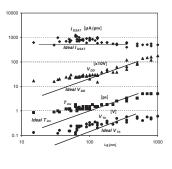
• Sign up for Piazza if you haven't already

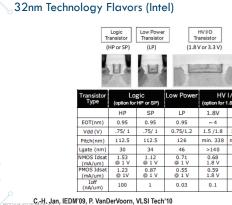

Not All Technologies are Equal

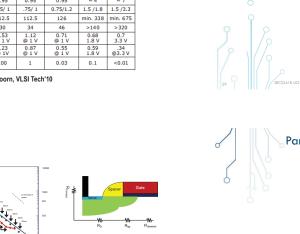
		Inte	el	1	Sams	ung		TS	MC		
Node	СРР	M×P	FP								
65nm	230	230		Node	СРР	MxP	FP	Node	CPP	MxP	FP
45nm	160	160		45nm	180	140		45nm	190	140	
32nm	112.5	112.5		32nm	130	100		40nm	170	130	
22nm	90	80	60	28nm	115	90		28nm	120	90	
14nm	70	52	42	20LPE	90	80	60	20SoC	90	64	
10nm	54	36	34	14LPE	78	64	48	16FF	90	64	48
7nm	37	32		1 OLPE	68	48	42	16FFC	96	64	48
				7LPP	54	36	27	10FF	66	44	36
								7FF	57	40	30
	> C	PP = Con	tacted poly	/ pitch				5FF	50	28	
		xP = Mir P = Fin pi	nimum met itch	al pitch				urce: Wei, Techlnsights M'17, IEDM'19, WikiChip, SemiV			

ASAP7

• Predictive technology kit used in this class

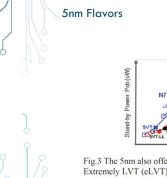

• None of the above processes, but close




Layer	Lithography	Width/drawn (nm)	Pitch (nm		
Fin	SAQP	6.5/7	27		
Active (horizontal)	EUV	54/16	108		
Gate	SADP	21/20	54		
SDT/LISD	EUV	25/24	54 ^b		
LIG	EUV	16/16	54		
VIA0-VIA3	EUV	18/18	25*		
M1-M3	EUV	18/18	36		
M4 and M5	SADP	24/24	48		
VIA4 and VIA5	LELE	24/24	34*		
M6 and M7	SADP	32/32	64		
VIA6 and VIA7	LELE	32/32	45*		
M8 and M9	SE	40/40	80		
VIA8	SE	40/40	57ª		

Ideal vs. Real Scaling

 \bullet Leakage slows down V_{Th\prime} V_DD scaling



 With scaling L, need to scale up doping - scale junction depth (control leakage) – S/D resistance goes up

• External resistance limits current $I_{D} \approx V_{\rm DS} \ / \left(R_{\rm channel} + R_{\rm ext} \right)$

Lg, R, C scaling

• LP keeps drain leakage constant

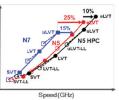
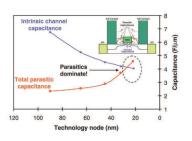
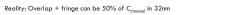




Fig.3 The 5nm also offers a set of critical HPC features. Extremely LVT (eLVT) for 25% faster peak speed over 7nm, and HPC 3-fin standard cell for additional 10% performance.

TSMC, IEDM'19

Parasitic Capacitance Scaling

