

Outline

- Module 5
 - Reducing supply voltage
 - Multiple supply voltages
 - Dynamic voltage scaling

5.E Scaling Supplies

Power /Energy Optimization Space

	Constant Throughpu	ut/Latency Variable The		oughput/Latency	
Energy	Design Time	Sleep Mode		Run Time	
Active	Logic design Scaled V _{DD} Trans. sizing Multi-V _{DD}	Clock gating		DFS, DVS	
Leakage	Stack effects Trans sizing Scaling V _{DD} + Multi-V _{Th}	Slee Multi-V _{DD} + Input con	ep T's Variable V _{Th} trol	DVS Variable V _{Th}	

Parallel Datapath

- The clock rate can be reduced by half with the same $\begin{array}{l} \text{throughput} \Rightarrow f_{par} = f_{ref}/2 \\ \text{\forall p_{ar} = V_{ref} / 1.7, C_{par} = 2.15C_{ref}$} \\ \text{$P_{par} = (2.15C_{ref}) (V_{ref}/1.7)^2 (f_{ref}/2) \approx 0.36 P_{ref}$} \end{array}$

• T. Burd, et al, JSSC, Nov 2000.

Reference Datapath

Architecture Trade-off for Fixed-rate Processing

- Critical path delay \Rightarrow T_{adder} + T_{comparator} (= 25ns) $\Rightarrow f_{ref} = 40 Mhz$
- Total capacitance being switched = C_{ref}
- $V_{dd} = V_{ref} = 5V$
- Power for reference datapath = $P_{ref} = C_{ref} V_{ref}^2 f_{ref}$ from [Chandrakasan92] (IEEE JSSC)

Pipelined Datapath

- Critical path delay is less \Rightarrow max $[T_{adder}, T_{comparator}]$
- Keeping clock rate constant: $f_{pipe} = f_{ref}$ Voltage can be dropped $\Rightarrow V_{pipe} = V_{ref} / 1.7$
- Capacitance slightly higher: $C_{pipe} = 1.15C_{ref}$
- - $P_{pipe} = (1.15C_{ref}) (V_{ref}/1.7)^2 f_{ref} \approx 0.39 P_{ref}$

A Simple Datapath: Summary

Architecture type	Voltage	Area	Power
Simple datapath (no pipelining or parallelism)	5V	1	1
Pipelined datapath	2.9V	1.3	0.39
Parallel datapath	2.9V	3.4	0.36
Pipeline-Parallel	2.0V	3.7	0.2

Power /Energy Optimization Space

Variable Throughput/Latency

Run Time

DFS, DVS

DVS

Variable V_{Th}

Sleep Mode

Clock gating

Sleep T's

Multi-V_{DD} Variable V_{Th}

Input control

Constant Throughput/Latency

Design Time

Logic design Scaled V_{DD}

Trans. sizing

Multi-V_{DD}

Stack effects Trans sizing

Scaling V_{DD}

+ Multi-V_{Th}

5.F Multiple Supplies

Multiple Supply Voltages

• Block-level supply assignment

- ${}^{\bullet}$ Higher throughput/lower latency functions are implemented in higher $V_{\rm DD}$
- Slower functions are implemented with lower V_{DD}
- Often called "Voltage islands"
- Separate supply grids, level conversion performed at block boundaries
- Multiple supplies inside a block ("power domains" or "voltage islands")
 - Non-critical paths moved to lower supply voltage
 - Level conversion within the block • Physical design challenging

Power Domains

Energy

Active

Leakage

Practical Examples

• Intel Skylake (ISSCC'16)

• Four power planes indicated by colors

Practical Examples

• Intel 28-core Skylake-SP (ISSCC'18)

- Vcc: core supply (per core) ■} Vccclm: Un-core supply Vccsa: System Agent supply
- Vccio: Infrastructure supply
- Vccsfr: PLL supply } Vccddrd: DDR logic supply
 } Vccddra: DDR I/O supply

• 9 primary VCC domains are partitioned into 35 VCC planes

- Leakage Issue
 - \bullet Driving from V_{DDL} to V_{DDH}
- > Level converter

Multiple Supplies Within A Block

• Downsizing, lowering the supply on the critical path will lower the operating frequency

- Downsize (lowering supply) non-critical paths
 - Narrows down the path delay distribution
 - Increases impact of variations

FF

188

FF

FF

Multiple Supplies in a Block

Level-Converting Flip-Flop

Layout:

5.F Dynamic Voltage Scaling

Power /Energy Optimization Space								
		Constant Throughput/Latency Variable T nergy Design Time Sleep Mode		Variable Throughput/Latency				
	Energy			p Mode	Run Time			
	Active	Logic design Scaled V _{DD} Trans. sizing Multi-V _{DD}	Clock gating		DFS, DVS			
	Leakage	Stack effects Trans sizing Scaling V _{DD} + Multi-V _{Th}	Sleep T's Multi-V _{DD} Variable V _{Th} + Input control		DVS Variable V _{Th}			

Exploit Data Dependent Computation Times To Vary the Supply

from [Nielsen94] (IEEE Transactions on VLSI Systems)

~

- · Circuit design constraints. (Functional verification)
- · Circuit delay variation. (Timing verification)
- · Noise margin reduction. (Power grid, coupling)
- · Delay sensitivity. (Local power distribution)

Design verification complexity similar to high-performance processor design @ fixed V_{DD}

Tracking with SRAM in Critical Path

Mismatch between logic and SRAM

SRAM multiplictive replica

Design for Dynamically Varying VDD

- Static CMOS logic.
- Ring oscillator.

Niki, JSSC'11

- · Dynamic logic (& tri-state busses).
- · Sense amp (& memory cell).

Max. allowed $|dV_{DD}/dt| \rightarrow$ Min. C_{DD} = 100nF (0.6µm) Circuits continue to properly operate as \mathbf{V}_{DD} changes

Multiple Path Tracking

CORE CL

Path type

Cho, ISSCC'16

Tunable delay

Polarity

TDC[15] TDC [14] ... TDC [0]

