Announcements

- Assignment 4 due next Friday.
- Reading

Outline

- Module 5
 - Dynamic voltage and frequency scaling

5.F Dynamic Voltage Scaling

Power/Energy Optimization Space

<table>
<thead>
<tr>
<th></th>
<th>Constant Throughput/Latency</th>
<th>Variable Throughput/Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energy Design Time</td>
<td>Sleep Mode</td>
</tr>
<tr>
<td>Active</td>
<td>Logic design</td>
<td>Scaled V_{DD}</td>
</tr>
<tr>
<td>Leakage</td>
<td>Stack effects</td>
<td>Trans sizing</td>
</tr>
</tbody>
</table>

Adaptive Supply Voltages

Exploit Data Dependent Computation Times To Vary the Supply

from (Nielsen94)

(IEEE Transactions on VLSI Systems)

Processors for Portable Devices

• Eliminate performance ↔ energy trade-off

Typical MPEG IDCT Histogram
Processor Usage Model

- **Desired Throughput**
 - Compute-intensive and low-latency processes
 - Maximum Processor Speed

System Optimizations:
- Maximize Peak Throughput
- Minimize Average Energy/operation

Common Design Approaches (Fixed VDD)

- **Compute ASAP:**
 - Excess throughput

Clock Frequency Reduction:

- Always high throughput
- Energy/operation remains unchanged...while throughput scaled down with f_{CLK}

Scale V_{DD} with Clock Frequency

- Constant supply voltage
- $3.3V$
- Reduce V_{DD}, slow circuits down.
- $10x$ Energy Reduction

CMOS Circuits Track Over V_{DD}

- Normalized max. f_{SW} vs V_{DD}
- Delay tracks within +/- 10%

Dynamic Voltage Scaling (DVS)

- Vary f_{CLK}, V_{DD}
- Dynamically adapt

- Delivered Throughput vs f_{CLK}
- Time

- **Operating System Sets Processor Speed**
 - DVS requires a voltage scheduler (VS).
 - VS predicts workload to estimate CPU cycles.
 - Applications supply completion deadlines.

- $\frac{CPU \ cycles}{\Delta \ time} = F_{DESIRED}$

Converter Loop Sets V_{DD}, f_{CLK}

- Feedback loop sets V_{DD} so that $F_{ERR} \to 0$.
- Ring oscillator delay-matched to CPU critical paths.
- Custom loop implementation → Can optimize C_{DD}.

Design Over Wide Range of Voltages

- Circuit design constraints. (Functional verification)
- Circuit delay variation. (Timing verification)
- Noise margin reduction. (Power grid, coupling)
- Delay sensitivity. (Local power distribution)

Design verification complexity similar to high-performance processor design @ fixed V_{DD}
Delay Variation & Circuit Constraints

- Cannot use NMOS pass gates – fails for $V_{DD} < 2V_T$.
- Functional verification only needed at one V_{DD} value.

Relative Delay Variation

- Timing verification only needed at min. & max. V_{DD}.

Multiple Path Tracking

- Four extreme cases of critical paths:
 - Gate
 - Interconnect
 - Diffusion
 - Series

- All vary monotonically with V_{DD}.

Alternative: Error Detection

- Mismatch between logic and SRAM
- SRAM multiplicative replica
- Tracking with SRAM in Critical Path
- SRAM multiplicative replica

- Max. allowed $|dV_{DD}/dt|
ightarrow$ Min. $C_{DD} = 100nF$ (0.6µm)

- Circuits continue to properly operate as V_{DD} changes

Static CMOS Logic

- Static CMOS logic.
- Ring oscillator.
- Dynamic logic (& tri-state busses).
- Sense amp (& memory cell).

- $0.6\mu m$ CMOS: $|dV_{DD}/dt| < 200V/\mu s$

- Static CMOS robustly operates with varying V_{DD}.
Ring Oscillator

- Output f_{CLK} instantaneously adapts to new V_{DD}.

Dynamic Logic

- $0.6\mu m$ CMOS: $|dV_{\text{DD}}/dt| < 20V/\mu s$
 - Cannot gate clock in evaluation state.
 - Tri-state busses fail similarly → Use hold circuit.

Measured System Performance & Energy

- Dynamic operation can increase energy efficiency $> 10x$.

Dynamic Logic

- False logic low: $\Delta V_{\text{DD}} > V_{\text{tp}}$
- Latch-up: $\Delta V_{\text{DD}} > V_{\text{ss}}$

V$_{\text{DC}}$-Hopping

- Two hopping levels are sufficient.

Dithering Between Supply Levels

- Done with switched-capacitor DC-DC converters which efficiently work only at discrete levels

Next Lecture

- Low-power design
 - Clock gating
 - Power gating