EE241B: Advanced Digital Circuits

Lecture 22 - Reducing Leakage

Borivoje Nikolić

Sweetfarm.org/goat-2-meeting: Invite a goat or a llama to a zoom meeting

https://www.sweetfarm.org/goat-2-meetin

Announcements

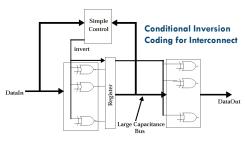
- Assignment 4 due next Friday.
- Reading
 - Rabaey, LPDE, Chapter 8

Outline

- Module 5
 - Clock gating
 - Leakage reduction during design time and runtime

5.G Reducing Switching Activity Through Logic Design

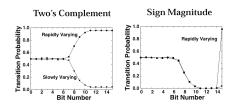
Power / Energy Optimization Space


	Constant Throughpu	ut/Latency	Variable Th	roughput/Latency
Energy	Design Time	Slee	o Mode	Run Time
Active	Logic design Scaled V _{DD} Trans. sizing Multi-V _{DD}	Clock	c gating	DFS, DVS
Leakage	Stack effects Trans sizing Scaling V _{DD} + Multi-V _{Th}		ep T's Variable V _{Th} trol	+ Variable V _{Th}

Basic Idea

- E ~ αCV
- ullet Reduce switching activity, α , through logic and architectural transformations
- Many options
 - Switching activity lower with deeper logic
 - Pipelining has significant effect
 - ${}^{\bullet}$ Reduce the number of clocked devices in a flip-flop
 - e.g. group generation of clk_b
 - A few logic ideas follow

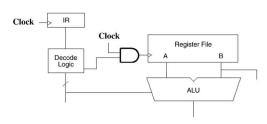
EECS241B L22 LEAKAGE


Circuit-Level Activity Encoding

from [Stan94] (1994 International Workshop on Low-power Design)

Number Representation

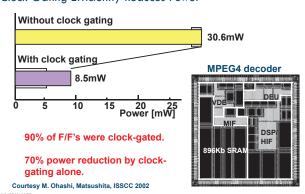
• Input signals are noise most of the time


• Sign-extension activity significantly reduced using sign-magnitude representation

5.H Clock Gating

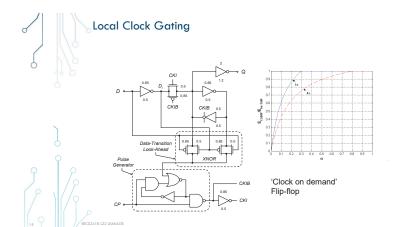
Power / Energy Optimization Space Constant Throughput/Latency Variable Throughput/Latency Energy Design Time Sleep Mode Run Time Logic design Scaled V_{DD} DFS, DVS Active Clock gating Trans. sizing Multi-V_{DD} Stack effects Trans sizing Sleep T's DVS, Leakage Scaling V_{DD} $\mathbf{Multi\text{-}V_{DD}} \ \mathbf{Variable} \ \mathbf{V_{Th}}$ Variable V_{Th} + Multi-V_{Th} + Input control

Clock Gating


Requires a bit more complex gate ... Well handled in today's EDA tools

Clock Gating

Enabling clock needs to be synchronized



Clock Gating

ARM Cortex-A9 Technical Reference Manual:

Dynamic high level clock gating activity

Local Clock Gating

Complex Designs Clock System . Variable Architecture Supply Fixed Supply CVD Gater 1/1 CVD Gater 1/N SLCB

Phase Aligner

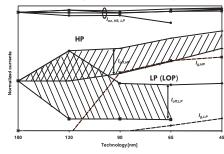
Fischer, ISSCC'05

Power / Energy Optimization Space

	Constant Throughpu	ut/Latency	Variable Th	roughput/Latency
Energy	Design Time	Slee	p Mode	Run Time
Active	Logic design Scaled V _{DD} Trans. sizing Multi-V _{DD}	Clock	c gating	DFS, DVS
Leakage	Stack effects Trans sizing Scaling V _{DD} + Multi-V _{Th}		ep T's Variable V _{Th} trol	DVS, Variable V _{Th}

Plan For the Rest of the Semester

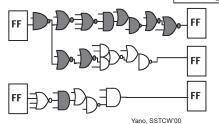
- 4 more lectures:
 - Finish low power (2 lectures)
 - Supplies, clocks and their interaction
- Homework 4 due on April 24th
 - Quiz 4 on April 28th
- Final on April 30th
 - 80 minutes, open everything
- Final presentations, May 4
 - Final reports due on May 4


5.I Lowering Leakage During Design: Multiple Thresholds

Power / Energy Optimization Space

	Constant Throughpu	ıt/Latency	Variable Th	roughput/Latency
Energy	Design Time	Sleep	o Mode	Run Time
Active	Logic design Scaled V _{DD} Trans. sizing Multi-V _{DD}	Clock	c gating	DFS, DVS
Leakage	Stack effects Trans sizing Scaling V _{DD} + Multi-V _{Th}	Mul Varia	ep T's ti-V _{DD} ble V _{Th} t control	DVS, Variable V _{Th}

Technology Options

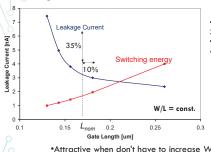

• Multiple thresholds, each spaced 50-100mV apart (5-10x less leakage)

Using Multiple Thresholds

- Cell-by-cell \mathbf{V}_{T} assignment (not block level) Allows us to minimize leakage
- Achieves all-low-V performance

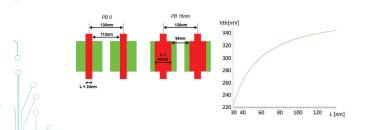
Typical Technologies

- 2-3 Thresholds
 - To choose from 4-6 in a node
 - In bulk and finfet, but not in FDSOI (unless doped)
- Threshold voltage diff ~5-10x in leakage



5.I Lowering Leakage During Design: Longer Channels

Power /Energy Optimization Space

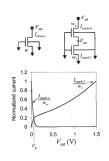

	Constant Throughpu	ıt/Latency	Variable Th	roughput/Latency
Energy	Design Time	Slee	p Mode	Run Time
Active	Logic design Scaled V _{DD} Trans. sizing Multi-V _{DD}	Clock	k gating	DFS, DVS
Leakage	Stack effects Trans sizing Scaling V _{DD} + Multi-V _{Th}	Mu Varia	ep T's lti-V _{DD} ıble V _{Th} t control	DVS, Variable V _{Th}

- •10% longer gates reduce leakage by 35% (in 130nm)
- with W/L = const.
- \bullet Increases switching energy by 21%

Poly Bias • 28FDSOI example

- •Attractive when don't have to increase W (memory)
- •Doubling L reduces leakage by 3x (in 0.13um)
- •Much stronger effect in 28nm!
- •Effect improves with shorter channel devices

Longer Channels


5.J Lowering Leakage During Design: Transistor Stacking

Power / Energy Optimization Space

	Constant Throughpu	ıt/Latency	Variable T	hroughput/Latency
Energy	Design Time	Slee	o Mode	Run Time
Active	Logic design Scaled V _{DD} Trans. sizing Multi-V _{DD}	Clock	gating	DFS, DVS
Leakage	Stack effects Trans sizing Scaling V _{DD} + Multi-V _{Th}	Sleep T's Multi-V _{DD} Variable V _{Th} + Input control		+ Variable V _{Th}

Narendra, ISLPED'01

Reduction	(in	0.13µ):

	High V_t	Low V
2 NMOS	10.7X	9.96X
3 NMOS	21.1X	18.8X
4 NMOS	31.5X	26.7X
2 PMOS	8.6X	7.9X
3 PMOS	16.1X	13.7X
4 PMOS	23.1X	18.7X

- Tradeoffs: W/2 1/3 of drive current, same loading 1.5W 3x loading, same drive current

Narendra, ISLPED'01

Next Lecture

- Low-power design
 - Power gating
 - Dynamic thresholds
 - Optimal supplies and thresholds

