inst.eecs.berkeley.edu/~ee241b

EE241B : Advanced Digital Circuits Lecture 3 – Modern Technologies Borivoje Nikolić

ASML Ramps up EUV Scanners Production: 35 in 2020, up to 50 in 2021. ASML shipped 26 extreme ultraviolet lithography (EUVL) step-and-scan systems to its customers last year, and the company plans to increase shipments to around 35 in 2020. And the ramp-up won't stop there: as semiconductor fabs ramp up their own usage of EUV process technologies, they are going to need more leading-edge equipment, with ASML expecting to sell up to 50 EUVL scanners in 2021.

AnandTech, January 23, 2020.

ASML's EUV Shipments							
	2018	2019	2020	2021			
Actual	18	26	35	45 - 50			
Target	20	30	?	?			

EECS241B L03 TECHNOLOG

Announcements

• Sign up for Piazza if you haven't already

EECS241B L02 TECHNOLOGY

Assigned Reading

- R.H. Dennard et al, "Design of ion-implanted MOSFET's with very small physical dimensions" IEEE Journal of Solid-State Circuits, April 1974.
 - Just the scaling principles •
- C.G. Sodini, P.-K. Ko, J.L. Moll, "The effect of high fields on MOS device and circuit performance," IEEE Trans. on Electron Devices, vol. 31, no. 10, pp. 1386 - 1393, Oct. 1984.
- K.-Y. Toh, P.-K. Ko, R.G. Meyer, "An engineering model for short-channel MOS devices" IEEE Journal of Solid-State Circuits, vol. 23, no. 4, pp. 950-958, Aug. 1988.
- T. Sakurai, A.R. Newton, "Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas," IEEE Journal of Solid-State Circuits, vol. 25, no. 2, pp. 584 - 594, April 1990.

Outline

- Scaling issues
- Technology scaling trends
- Features of modern technologies
 - Lithography
 - Process technologies

EECS241B LO2 TECHNOLOGY

1.C Features of Modern Technologies

EECS241B L02 TECHNOLOGY

5

Technology Features

- Lithography implications (this lecture)
 - Restrictions on design
 - Implications on design variability
- FEOL features (next lecture)
- Models

EECS241B

Lithography – Key Points

- Current lithography restricts features in design, affects variability
- This is change with EUV (expected next year in volume)
 - But that 'next year' has been taking a while to arrive

EECS241B L02 TECHNOLOGY

Lithography Scaling

EECS241B L02 TECHNOLOGY

Sub-Wavelength Lithography

• Light projected through a gap

Sub-Wavelength Lithography

- $CD \sim half pitch$
- Decrease λ
 - Presently: 193 nm (ArF excimer laser)
 - (Distant?) future: EUV
- Increase $NA = n \sin \alpha$
 - Maximum *n* is 1 in air
 - Presently: ~0.92-1.35
 - Immersion
- Result: Shrinking k1
 - Presently: 0.35 0.4
 - Theoretical limit: 0.25

 $CD = k_1 \frac{\lambda}{NA}$

$$CD_{\min} = k_1 \frac{\lambda}{NA} = 0.25 \frac{193nm}{0.92} =$$

22nm pitches beyond resolution limit

50*nm*

Litho: How to Enhance Resolution?

- Immersion
- Off-axis illumination
- Optical proximity correction
- Phase-shifting masks
- Double patterning

EECS241B L02 TECHNOLOG

Litho (1): Immersion

- Project through a drop of liquid
- $n_{water} = 1.47$

$$CD_{\min} = k_1 \frac{\lambda}{NA} = 0.25 \frac{193nm}{1.35} = 35k$$

EECS241B L02 TECHNOLOGY

nm

13

Litho (2): Illumination

- Amplifies certain pitches/rotations at expense of others
 - Regular Illumination

- Many off-axis designs (OAI)
 - > Annular
 - > Quadrupole / Quasar
 - > Dipole

EECS241B LO2 TECHNOL Kahng, ICCAD'03

Litho (3): Resolution Enhancement

EECS241B LO2 TECHNOLOGITATIMANN, ISSCC'07

15

Litho (3): OPC

- Optical Proximity Correction (OPC) modifies le process distortions
 - Add non-electrical structures to layout to control di
 - Rule-based (past) or model-based

Inverse Lithograpphy Techniques

• OPC vs. ILT

	Optical Proximity Correction		Inverse Lithography Technol		
	45 nm node	28 nm node	14 nm node	7 nm node	
	without OPC	normal OPC	normal ILT	ideal ILT	
			(<u></u>)	0	
FCS241B	https://se	miengineering.com/what-h	appened-to-inverse-lithography/	/	

Extreme Ultraviolet Lithography

- Wavelength $\lambda = 13.5$ nm
- Lower wafer throughput
- Simpler design rules (single patterning)
- Used on critical layers

- First deployed by Samsung in 7nm node (Exynos 9825 SoC)
 - Also used by Intel in 7nm, TSMC in 5nm

19

Litho (4): Restricted Design Rules

Regular layout STI isolation

J.Hartmann, ISSCC'07

Litho (5): Phase-Shift Masks

- Phase Shifting Masks (PSM)
 - Creates interference fringes on the wafer →Interference effects boost contrast →Phase Masks can make extremely small lines

A.Kahng, ICCAD'03

Litho (6): Double Patterning

- Double exposure double etch
 - Double exposure double etch
 - Pitch split, litho-etch-litho-etch (LELE)
- Self-aligned methods
 - Self-aligned double patterning
 - Self-aligned quadruple patterning

Double-Exposure Double-Etch

32nm Examples

Single exposure

Double exposure

IEDM'08

Pitch-Split Double Exposure

Also called litho-etch-litho-etch (LELE)

Litho: Design Implications

- Forbidden directions
 - Depends on illumination type
 - Poly lines in other directions can exist but need to be thicker
- Forbidden pitches
 - Nulls in the interference pattern
 - Multiple patterning
- Forbidden shapes in PSM, multiple-patterning
- Assist features
 - If a transistor doesn't have a neighbor, let's add a dummy

Litho: Current Options (Beyond 10nm)

- Multiple patterning
 - NA ~ 1.2-1.35
- EUV lithography
 - $\lambda = 13.5$ nm

Normalized wafer cost adder*		
SE	1	
LELE	2.5	
LELELE	3.5	
SADP	2	
SAQP	3	
EUV SE	A	3
EUV SADP	6	

*TEL[™] Internal calculation

A. Raley, SPIE'16

Cost adder reduced with increased power/throughput of EUV

1.D Modern Bulk/finFET/FDSOI processes

EECS241B L02 TECHNOLOGY

Some of the Process Features

- 1. Shallow-trench isolation
- 2. High-k/Metal-gate technology
- 3. Strained silicon
- 4. Thin-body devices (28nm, and beyond)
- 5. Copper interconnects with low-k dielectrics

- 1. Shallow Trench Isolation
- Less space needed for isolation
- Some impact on stress

2. Hi-k/Metal gate

K. Mistry, IEDM'07

Replacement gate technology (Intel)

Form Transistors Remove Poly Si Deposit Metal Gate S. Natarajan, IEDM'08

Tensile channel strain 10% drive current increase

Intel

Intel's Strained Si Numbers

Performance gains:

	90 nm		65 n		
	NMOS	PMOS	NMOS		
μ	20%	55%	35%		
IDSAT	10%	30%	18%		
IDLIN	10%	55%	18%		

S. Thompson, VLSI'06 Tutorial

Strained Silicon

7mm

Wz=

 $W_{1} = I$

L=24nm Tsi=7nm

• 22/14nm finFET

N. Planes, VLSI'2012

C. Auth, VLSI'2012

5. FinFETs

• FinFET scaling

22/20nm

Intel,

IEDM'12

• N-P spacing

16/14nm 10nm

Intel,

50 nm

IEDM'17

Intel,

VLSI'14

• Track scaling

Garcia Bardon, IEDM'16

28FDSOI (STMicroelectronics)

5. FDSOI

28FD-SOI (Samsung)

22FDX (GLOBALFOUNDRIES)

12FDX (GLOBALFOUNDRIES)

2017

5. Interconnect

J. Hartmann, ISSCC'07

Interconnect: CMP

Cu interconnect: Dual damascene process

- Metal density rules (20%-80%)
- Slotting rules
- Also: Antenna rules

Next Lecture

• Transistor models

EECS241B L02 TECHNOLOGY

