

Outline

- Module 2
 - MOS transistor I-V and C-V models

Module 2: Transistor and Gate Models

Module 2 Goals

- Models that traverse design hierarchy
- Start with transistor models
- Gate delay models
- Use models to time the design
- Modeling variability
- Based on 251A, approach
 - Increase accuracy, when needed

Device Models

- Transistor models
 - I-V characteristics
 - C-V characteristics

Interconnect models

- R, C, L
- Covered in EE240A

2.A MOS Modeling Goals

Transistor Modeling

• Different levels:

- Hand analysis
- Computer-aided analysis (e.g. Matlab) • Switch-level simulation (some flavors of 'fast Spice')
- Circuit simulation (Hspice)
- These levels have different requirements in complexity, accuracy and speed of computation
- We are primarily interested in delay and energy modeling, rather than current modeling
- But we have to start from the currents...

• Homework 1 will be assigned this week

Transistor Modeling

• DC

- Accurate I-V equations
- Well behaved conductance for convergence (not necessarily accurate)

Transient

- Accurate I-V and Q-V equations
- Accurate first derivatives for convergence
- Conductance, as in DC

simple • Physical vs. empirical extendible empirical number of from BSIM group parameters

curate

Transistor I-V Modeling

BSIM

- Superthreshold and subthreshold models
- Need smoothening between two regions
- EKV/PSP
 - One continuous model based on channel surface potential

MOS I-V (BSIM)

Start with the basics:

 $I_{DS} = WC_{ox}(V_{GS} - V_{Th} - V_C(x)) \ \mu E$

MOS Currents (32nm CMOS with L>>1µm)

Goal for Today

- ${}^{\bullet}$ Develop velocity-saturated model for ${\rm I_{on}}$ and apply it to sizing and delay calculation
 - Similar approach as in 251A, just use an analytical model

2.B Long-Channel MOS On-Current

MOS I-V (BSIM)

Start with the basics:

- $I_{DS} = WC_{ox}(V_{GS} V_{Th} V_{C}(x)) \ \mu E$
- $I_{DS} = WC_{ox}(V_{GS} V_{Th} V_C(x)) \ \mu(dV_C(x)/dx)$

• When integrated over the channel: $I_{DS} = \frac{W}{L} \mu C_{ox} \left(V_{GS} - V_{Th} - \frac{V_{DS}}{2} \right) V_{DS}$

Transistor saturates when $V_{GD} = V_{Thr}$ - the channel pinches off at drain's side.

 $I_{\text{DS}} = \frac{W}{2L} \mu C_{\text{ox}} (V_{\text{GS}} - V_{\text{Th}})^2$

Unified MOS Model

- Model presented is compact and suitable for hand analysis.
- \bullet Still have to keep in mind the main approximation: that $V_{\textit{DSat}}$ is constant . When is it going to cause largest errors?
 - When does E scale? Transistor stacks.
- But the model still works fairly well.
 - Except for stacks

Approximation n = 1, piecewise

Sodini, Ko, Moll, TED'84 Toh, Ko, Meyer, JSSC'88 BSIM model

 $I_{\rm DS} = WC_{\rm ox}(V_{\rm GS} - V_{\rm Th} - V_{\rm C}(x)) v$

 $I_{DS} = \frac{\mu C_{ox}}{1 + (V_{DS}/E_{c}L)} \frac{W}{L} \left((V_{GS} - V_{Th}) V_{DS} - \frac{V_{DS}^{2}}{2} \right)$

> In saturation:

$$I_{DSat} = C_{ox}WV_{sat}(V_{GS} - V_{Th} - V_{Dsat})$$
$$I_{Dsat} = \frac{\mu C_{ox}}{1 + (V_{Dsat}/E_{c}L)} \frac{W}{L} \left((V_{GS} - V_{Th})V_{Dsat} - \frac{V_{Dsat}^{2}}{2} \right)$$

Drain Current in Velocity Saturation • Solving for V_{Dsat}

$$V_{DSat} = \frac{(V_{GS} - V_{Th})E_{c}L}{(V_{GS} - V_{Th}) + E_{c}L}$$

> And saturation current

ν

 $I_{DSat} = \frac{W}{L} \frac{\mu_{eff} C_{ox} E_{c} L}{2} \frac{(V_{GS} - V_{Th})^{2}}{(V_{GS} - V_{Th}) + E_{c} L}$

Velocity Saturation

>	Can calc	ulate	V _{DSat}	(V _{Th} \sim 0.4V in 32nm)				
	<i>V</i> _{GS} [V]	0.5	0.6	0.7	0.8	0.9	1.0	
	$V_{DSat}[V]$	0	0.05	0.11	0.18	0.25	0.33	

- > For $V_{GS} V_{Th} << E_{C}L$, V_{DSat} is close to $V_{GS} V_{Th}$
- For large V_{GS}, V_{DSat} bends upwards toward E_CL

> Therefore $E_{c}L$ can be sometimes approximated with a constant term

Application of Models: NAND Gate

• 2-input NAND gate

Sizing for equal transistions: • P/N ratio (β -ratio) of 1 in < 22nm, 1.6 >22nm • Upsizing stacks by a factor proportional to the stack height

2.E Application of Models

J	
6	1
	6
9	9

Transistor Stacks

- \bullet With transistor stacks, $V_{\rm DS'}$ $V_{\rm GS}$ reduce.
- Unified model assumes $V_{DSat} = \text{const.}$
- For a stack of two, appears that both have exactly double R_{ekv} of an inverter with the same width
- Therefore, doubling the size of each, should make the pull down R equivalent to an inverter

Velocity Saturation

As $(V_{GS}-V_{Th})/E_{C}L$ changes, the depth of saturation changes

$$I_{DSat} = \frac{W}{L} \frac{\mu_{eff} C_{ox} E_{c} L}{2} \frac{(V_{GS} - V_{Th})^{2}}{(V_{GS} - V_{Th}) + E_{c} L}$$

Examples

Note about FinFETs

• Widths are quantized