inst.eecs.berkeley.edu/~ee241b

EE241B : Advanced Digital Circuits Lecture 5 – Leakage, Delay Models Borivoje Nikolić

The passing of Barrie Gilbert (1937-2020). He was well known for his invention of numerous analog circuit concepts, holding over 100 patents worldwide, and for the discovery of the Translinear Principle. His name is attributed to a class of related topologies loosely referred to as the Gilbert cell, one of which is a mixer - a key frequency translation device - used in every modern wireless communication device.

Announcements

• Homework 1 posted today, due in 2 weeks

Outline

- Module 2
 - MOS transistor leakage
 - C-V models
 - Delay revisited

Recap last lecture

- Scaled transistors are different that the ones in textbooks
- But the same principles still apply
- Sizing:
 - P/N ratio is set by mobilities
 - Mobility enhancements are more effective on PMOS devices
 - ~1:1 in sub 16nm
 - Stack sizing set by velocity saturation
 - Stack of 2 reduces NMOS current by $\sim 2/3$
 - PMOS depends on the degree of saturation, also $\sim 2/3$ in sub 16nm

Recap last lecture: Logical Effort

• Older CMOS (>1µm)

• Planar CMOS (~28nm, bulk, FDSOI)

2.E Other Velocity Saturation Models

Other Models: Alpha Power Law Model

• Simple model, sometimes useful for hand analysis

$$I_{DS} = \frac{W}{2L} \mu C_{ox} (V_{GS} - V_{Th})^{\alpha}$$

Parameter a is between 1 and 2.

Sakurai, Newton, JSSC 4/90

EECS241B L05 LEAKAGE/DELAY MODELS

effective restatance

Alpha Power Law Model

- This is not a physical model
- Simply empirical:
 - ${}^{\bullet}$ Can fit (in minimum mean squares sense) to variety of α 's, V_{Th}
 - Need to find one with minimum square error fitted V_{Th} can be different from physical
 - Can also fit to α = 1
 - What is V_{Th}?

EECS241B L05 LEAKAGE/DELAY MODEL

s, V_{Th} can be

Drain current vs. gate-source voltage

Saturation Currents

	Model	Usage
•	$I_{DS} = K \frac{W}{L} (V_{GS} - V_{THZ})$	Delay estimates with $V_{DD} >> V_{TH}$
	$I_{DS} = \frac{W}{L} \frac{\mu C_{ox}}{2} (V_{GS} - V_{TH})^2$	Long channel devices (rare in digital)
	$I_{DS} = \frac{W}{L} \frac{\mu C_{ox}}{2} \left(V_{GS} - V_{TH} \right)^{\alpha}$	Delay estimates in a wider range of V
	$I_{DS} = \frac{W}{L} \mu C_{ox} \left(\left(V_{GS} - V_{TH} \right) V_{Dsat} - \frac{V_{Dsat}^2}{2} \right)$	Easy to remember, does not handle sto correctly
	$I_{DS} = \frac{W}{L} \frac{\mu C_{ox}}{2} \frac{E_{C} L (V_{GS} - V_{TH})^{2}}{(V_{GS} - V_{TH}) + E_{C} L}$	Handles stacks correctly, sizing

2.F Transistor Leakage

Transistor Leakage

Transistor Leakage (130nm)

- diffusion current (like a bipolar transistor)
- exponential increase with V_{DS} (DIBL)

Transistor Leakage (32nm LP PTM)

Subthreshold Current

• Subthreshold behavior can be modeled physically

$$I_{ds,subth} = \mu_{eff} C_{ox} \frac{W}{L} (m-1) \left(\frac{kT}{q}\right)^2 e^{\frac{V_{GS} - V_{Th}}{mkT/q}} \left(1 - e^{-\frac{Vds}{kT/q}}\right)$$
$$m = 1 + \frac{C_{dm}}{C_{ox}} \quad (m \sim 1.1-1.4)$$

Taur, Ning, Modern VLSI Devices

Or (approx): $I_{ds,subth} = I_0 \frac{W}{W_0} 10^{\frac{(V_{gs} - V_{Th}) + \gamma V_{ds}}{S}}$

$$S = 2.3m \frac{kT}{q}$$

EECS241B L05 LEAKAGE/DELAY MODELS

Courtesy of IEEE Press, New York. © 2000

Leakage Components (250nm)

- 1. pn junction reverse bias current
- 2. Weak inversion
- 3. Drain-induced barrier lowering (DIBL)
- 4. Gate-induced drain leakage (GIDL)
- 5. Punchthrough
- 6. Narrow width effect
- 7. Gate oxide tunneling
- 8. Hot carrier injection

$$1E-7$$
weak inversion + p-n junction + DIBL $1E-8$ $@V_D = 3.9V$ $1E-9$ weak inversion + p-n junction + DIBL $1E-10$ $@V_D = 2.7V$ $1E-11$ $@V_D = 2.7V$ $1E-12$ weak inversion + p-n junction $1E-12$ p-n junction $1E-13$ p-n junction $1.$ Nopu $Leakage (I_{OFF})$ Current in Amps1. Nopu $2.$ No with $3.$ No gas

L + GIDL

L

unchthrough vidth effect ate leakage

Leakage Components

- ^o Drain-induced barrier lowering (DIBL)
 - Voltage at the drain lowers the source potential barrier
 - Lowers V_{Th} , no change on S
- Gate-induced drain leakage (GIDL)
 - High field between gate and drain increases injection of carriers into substrate -> leakage
 - (band-to-band leakage)

2.H Transistor C-V

MOS Transistor as a Switch

Discharging a capacitor

• Can solve:

- Prefer using equivalent resistances
- Find *t*_{pHL}
- Find equivalent C, R

MOS Capacitances

- Gate capacitance
 - Non-linear channel capacitance
 - Linear overlap, fringing capacitances
 - Miller effect on overlap, fringing capacitance
- Non-linear drain diffusion capacitance
 - PN junction
- Wiring capacitances
 - Linear

Gate and Drain Capacitances

Gate capacitance

Drain capacitance

Gate Capacitances

- Gate capacitance is non-linear
 - First order approximation with $C_{ox}WL$ ($C_{ox}L = 2fF/\mu m$)
- Need to find the actual equivalent capacitance by simulating it
- Since this is a linear approximation of non-linear function, it is valid only over the certain range
 - Different capacitances for HL, LH transitions and power computation
- Drain capacitance non-linearity compensates
 - But this changes with fanout

2.1 Delay Revisited

MOS Transistor as a Switch (EECS251A)

MOS Transistor as a Switch (EE241A)

Solving the integral:

$$R_{eq} = \frac{1}{-V_{DD}/2} \int_{V_{DD}} \frac{V}{I_{DSAT}(1+\lambda V)} dV \approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{7}{9}\lambda V_{DD}\right)$$

with appropriately calculated I_{dsat}

Averaging resistances:

$$R_{eq} = \frac{1}{2} \left(\frac{V_{DD}}{I_{DSAT}(1 + \lambda V_{DD})} + \frac{V_{DD}/2}{I_{DSAT}(1 + \lambda V_{DD}/2)} \right) \approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{5}{6} \lambda V_{DD} \right)$$

CMOS Performance

Propagation delay:
$$t_{pHL} = (\ln 2)R_{eqn}C_L$$
 $t_{pLH} = (\ln 2)R_e$

(a) schematic

EECS241B L05 LEAKAGE/DELAY MODELS

ln2 = 0.7

Switching Trajectory

Effective Current

- $I_{on}(V_{DD})$ is never reached
- Define $I_{eff} = (I_H + I_L)/2$
- $I_{L} = I_{DS}(V_{GS} = V_{DD}/2, V_{DS} = V_{DD}); I_{H} = I_{DS}(V_{GS} = V_{DD}, V_{DS} = V_{DD}/2),$

DIBL Matters

- A. Loke, VLSI'16
 - FinFET, FDSOI less DIBL

$$I_{eff} = \frac{I_{LO} + I_{HI}}{2}$$
$$I_{LO} @ V_{GS} = \frac{1}{2}V_{DD}, V_{DS} = \frac{1}{1} @ V_{GS} = V_{DD}, V_{DS} = \frac{1}{2}$$

I_{eff} is better than *I_{Dsat}* for estimating inverter *CV/I* switching delay

Less DIBL \rightarrow higher I_{eff} & r_{out} for same I_{Dsat}

Transistor Stacks

Effective Current in Stacks

Von Arnim, IEDM'2007

Next Lecture

• Standard Cells

